Lecture6

Thursday, February 10, 2022 11:46 AM

PDF Lecture6

Lecture 6: General Equilibrium

Mauricio Romero

(D) (Ø) (2)

Lecture 6: General Equilibrium

A few things I forgot to say about economies with production

Robinson Crusoe

Two firms

General Economies with Many Consumers and Production

(0) (0) (2) (2) 2

Lecture 6: General Equilibrium

A few things I forgot to say about economies with production

0.12

Two firms

General Economies with Many Consumers and Production

With production, Edgeworth box illustrations are no longer helpful

Depending on the production plan, the size of the box can change

Instead we work with what is called a production possibilities frontier

-

Lecture 6: General Equilibrium

A few things I forgot to say about economies with production

Robinson Crusoe

Two firms

General Economies with Many Consumers and Production

Lecture 6: General Equilibrium

A few things I forget to say about economies with production

Robinson Crusoe

-

General Economies with Many Consumers and Production

Using calculus... Using calculus... This is the order condition:

200 AN 100 AN 100 AN

We can solve the above graphically. The set

 $\{\{L, x\} : x \leq f\{L_X\}, L_s + L \leq \tilde{L}\}$

describes the possible sets of bundles that Robinson could possibly consume in this economy. This is called the **production possibilities set** (PPS) The boundary of the PPS is the**production possibilities frontier** (PPF)

The frontier is basically described by the curve:

 $x = f(L_x), L_x \in [0, \tilde{L}].$

The frontier is basically described by the curve:

 $x = f(L_x), L_x \in [0, \tilde{L}].$ The maximization problem for finding Pareto efficient allocations simply amounts to maximizing the utility of Robinson subject to being inside this constraint set.

Lecture 6: General Equilibrium

Robinson Crusoe Econ 1 Intuition

▶ Recall that at a Pareto optimum, we found that we must have $MRT_{L,s} = MRS_{L,s}$ • Suppose one is at an allocation where $MRT_{L,x} = 2 > MRS_{L,x} = 1$ Such an allocation cannot be a Pareto efficient allocation. Why? • Recall that at a Pareto optimum, we found that we must have $MRT_{Lx} = MRS_{Lx}$

▶ Suppose one is at an allocation where $MRT_{L,x} = 2 > MRS_{L,x} = 1$

Such an allocation cannot be a Pareto efficient allocation. Why?

One could potentially reorganize production to get an even better outcome for the consumer

れえ=2< れい=

Lecture 6: General Equilibrium

A few things I forgot to say about economies with production

Robinson Crusoe

Two firms

General Economies with Many Consumers and Production

Lecture 6: General Equilibrium

A fast the part of the part of the desire of the part of the

Particular Council

Two firms

Renew Researcher with Many Contention and Production

AND DESCRIPTION OF THE OWNER.

The consumer has a utility function u(x, y)

The consumer is endowed with 0 units of both x and y but x and y can be produced from labor and capital

She is endowed with K units of capital and L units of labor

► There are two firms each of which produces a commodity x and y.

Firm x produces x according to a production function f_x and firm y produces y according to a production f_y, f_x(t_x, k_y), f_y(f_y, k_y).

To solve for the Pareto efficient allocation we solve $max o(x, y) such that <math display="block">x \leq f_{n}(x, k_{n}), y \leq f_{n}(x,$

Then given the PPS, we want to maximize the utility of the agent subject to being inside the PPS. If we want to maximize the utility of the agent, we need:

1. The chosen (x^*, y^*) must be on the PPF.

2. The indifference curve of the consumer must be tangent to the PPF at (x^*, y^*) .

Lecture 6: General Equilibrium

Two firms Calculus Approach I

To find the PPF: given that x units of commodity x must be produced, what is the maximum amount of y's that can be produced?

To find the PPF: given that x units of commodity x must be produced, what is the maximum amount of y's that can be produced? Thus $PPF(x) = \max_{f_r, k_r} f_r(\ell_r, k_r) \text{ such that } \overline{x} = f_r(L - \ell_r, K - k_r).$

The first order conditions give us:
$$\begin{split} & \frac{\partial f_y}{\partial \ell} (\ell_y^*, k_y^*) - \lambda \frac{\partial f_x}{\partial \ell} (L - \ell_y^*, K - k_y^*) = 0 \\ & \frac{\partial f_y}{\partial k} (\ell_y^*, k_y^*) - \lambda \frac{\partial f_x}{\partial k} (L - \ell_y^*, K - k_y^*) = 0 \end{split}$$

 $\frac{\partial s}{\partial r} (\xi_1 U_r^{r}, u_r^{r}), \xi_1 (t-t_r^{r}, \tilde{n}-t_r^{r})) \frac{\partial t_r}{\partial t} (U_r^{r}, u_r^{r}) = \frac{\partial s}{\partial r} (\xi_1 U_r^{r}, u_r^{r}), \xi_1 (t-t_r^{r}, K-t_r^{r})) \frac{\partial t_r}{\partial t} (t-t_r^{r}, K-t_r^{r}), \\ \frac{\partial t}{\partial r} (\xi_1 U_r^{r}, u_r^{r}), \xi_1 (t-t_r^{r}, K-t_r^{r})) \frac{\partial t}{\partial r} (\xi_1 U_r^{r}, u_r^{r}) = \frac{\partial t}{\partial r} (\xi_1 U_r^{r}, u_r^{r}), \\ \frac{\partial t}{\partial r} (\xi_1 U_r^{r}, u_r^{r}), \xi_1 (t-t_r^{r}, K-t_r^{r})) \frac{\partial t}{\partial r} (t-t_r^{r}, K-t_r^{r}) = \frac{\partial t}{\partial r} (\xi_1 U_r^{r}, u_r^{r}), \\ \\ \frac{\partial t}{\partial r} (\xi_1 U_r^{r}, u_r^{r}), \\ \frac{\partial t}{\partial r} (\xi_1 U_r^{r}, u_r^{r}), \\ \\ \frac{\partial t}{\partial r} (\xi_1 U_r^{r}, u$

Then the first order conditions give us. $\frac{2\pi}{2\pi} \{ G(t_1^{\alpha_1}, t_2^{\alpha_2}), G(t_1 - t_1^{\alpha_1}, K - t_2^{\alpha_1}) \frac{2\pi}{2\pi} \{ G_1^{\alpha_2}, K^{\alpha_1} \} - \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, K^{\alpha_2} \}, A(t_1 - t_1^{\alpha_1}, K - t_2^{\alpha_1}) \frac{2\pi}{2\pi} \{ H - t_1^{\alpha_1}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G(t_1^{\alpha_1}, t_2^{\alpha_1}), t_2 - t_1^{\alpha_1}, K - t_2^{\alpha_1}\} \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, G_2^{\alpha_1} \}, A(t_1 - t_1^{\alpha_1}, K - t_2^{\alpha_1}) \frac{2\pi}{2\pi} \{ H - t_1^{\alpha_1}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_1} \}, t_2^{\alpha_1}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} \frac{2\pi}{2\pi} \{ H - t_1^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_1} \}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_1} \}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_1} \}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_1} \}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_1} \}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_1} \}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_1} \}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_1} \}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_2} \}, H - t_2^{\alpha_1}, H - t_2^{\alpha_1} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_2} \}, H - t_2^{\alpha_1}, H - t_2^{\alpha_2} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_2} \}, H - t_2^{\alpha_1}, H - t_2^{\alpha_2} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_1}, t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_2}, t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_2}, t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_2}, t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_2}, t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_2}, t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_2}, t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_2}, t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \}, H - t_2^{\alpha_2} \} + 1, \\ \frac{2\pi}{2\pi} \{ G_2^{\alpha_2}, t_2^{\alpha_2} \}, H - t_2^{\alpha_2}$

Then the first order conditions give us: $\frac{du}{du}(0(t_{1}^{-1},t_{2}^{-1},t_{3}^{-1},t_{3}^{-1},t_{4}^{-1},t_{3}^{-$

 $\max_{\ell_x, k_x} u(f_x(\ell_x, k_x), f_y(L - \ell_x, K - k_x))$

We can simplify the problem:

$$\begin{split} \max u(x,y) \text{ such that } & x \leq f_x(\ell_x,k_x), y \leq f_y(\ell_y,k_y), \\ & L \geq \ell_x + \ell_y, K \geq k_x + k_y. \end{split}$$

We solve directly the original maximization problem.

Calculus Approach II

Two firms

Lecture 6: General Equilibrium

Thus we have learned the following: A Pareto efficient allocation is characterized by two conditions 1. $\left(x^{*},y^{*}\right)$ is on the PPF: $\mathit{TRS}^{x}_{\ell,k}=\mathit{TRS}^{y}_{\ell,k}.$ 2. At (x^*, y^*) the indifference curve is tangent to the PPF: $MRS_{x,y} = MRT_{x,y}$.

	1.0	
		We want the second
Therefore		
	$f_{\nu}(L - \ell_{\nu}, K - k)$	$(z_i) = y$
	$\left(L-\sqrt{\frac{L}{2}}\right)\left(K-\sqrt{\frac{K}{2}}\right)$	$\overline{a} = v$
	V(- VK)(- VL	7 / ·
	PPP(x) = (V R)	L-x)
Then we need	to maximize the following	_
	$\max_{x,y} \sqrt{xy} \text{ such that } y = \sqrt{K}$	L - x.
The Pareto ef	ficient allocation is given by:	
	$\left(x^{*} = y^{*} = \frac{1}{2}\sqrt{KL}, \ell_{x}^{*} = \ell_{y}^{*} = \frac{1}{2}L, k_{y}^{*}\right)$	$=k_{y}^{*}=rac{1}{2}K$.
ecture 6: Gener	al Equilibrium	
A few things I	forgot to say about economies with pro-	duction
Robinson Crus	son	
Two firms		
2 32		
General Econo	amies with Many Consumers and Product	lion

Lecture 6: General Equilibrium

General Economies with Many Consumers and Production

The set of Pareto efficient allocations will be characterized by the following maximization problem: $\max_{\substack{(s,t)\\(s,t)}} u_t(x_1^1,x_2^1,\ldots,x_t^1) \text{ such that } u_t(x_1^2,\ldots,x_t^2) \geq y_2 = u_t(x_1^2,\ldots,x_t^2),$

$$\begin{split} & u_1(x_1^{'},\ldots,x_l^{'}) \geq u_j = u_1(\hat{x}_1^{'},\ldots,\hat{x}_l^{'}), \\ & x_1^{'}+\cdots,x_l^{'}+x_1^{'}+\cdots+x_l^{'} \leq \sum_{j \neq i,j = 1} f_j(x_1^{'},\ldots,x_l^{'}) + \sum_{j = 1}^{j'} \omega_j^{'}, \end{split}$$
 $x_{i}^{2} + \cdots x_{i}^{d} + z_{i}^{3} + \cdots + z_{i}^{d} \leq \sum_{j \in I_{i} \setminus j \leq i} \ell_{i}^{j}(x_{i}^{j}, \dots, x_{i}^{d}) + \sum_{i=1}^{l} \omega_{i}^{j}.$

	Equilibrium			
Han some Crosse Eron 3 fotbil A commercial				
General Econom Solving the M	es with Many Con faximization Probl	sumers and Produc em	tion	
				1.1.1.1.1.1.1.1
Theorem Suppose that utility that (\hat{x}, \hat{x}) is an intr hold 1. For every $f \neq 0$	functions are strictly iriar adlocation. Then I ['] , marginal rates of s	monotone, differentials (8, 8) is Parato efficien obstitution of any pair	le, and quasi-concave. Sopp to if and only if all of the fo of commodities are equalize	rose also Vowing nd across
Theorem Suppose that utility that (\hat{x}, \hat{x}) is an intr hold 1. For every $f \neq$ consumers.	functions are strictly min allocation. Then l_{-}^{\prime} marginal rates of a $\frac{n_{21}}{2n_{1}}(k_{1}^{2},, k_{c}^{4})$	monotone, differentiab $(\hat{s}, \hat{s}) \equiv Pareto efficien sobstitution of any pair \frac{\partial m_1}{\partial m_1}(\hat{s}_1^2, \dots, \hat{s}_{\ell}^2) = \frac{\partial m_2}{\partial m_1}(\hat{s}_2^2, \dots, \hat{s}_{\ell}^2)$	le, and quasi-concave. Supp re if and only if all of the fa of commodities are equal to $\frac{\partial u_i}{\partial u_i}(u_i^0, \dots, u_i^0)$	nose also loosing nd across
Theorem Suppose that utility that (\$, \$) is an into hold L For avery \$t ≠ consumers. 2 For avery \$t ≠ consumers.	functions are strictly nor allocation. Then l_{i}^{t} , marginal rates of a $\frac{dm}{dm}(k_{1}^{t},, k_{i}^{t})$ $\frac{dm}{dm}(k_{1}^{t},, k_{i}^{t})$ $\frac{dm}{dm}(k_{1}^{t},, k_{i}^{t})$	monotore, differential $(3, 2) \cong Parato efficient solutilution of any pair \frac{d_{W_1}}{d_{W_2}}(k_1^2,, k_l^2) = \frac{d_{W_2}}{d_{W_2}}(k_1^2,, k_l^2)$	In , and quasi-concave. Supp is if and only if all of the for- of commodities are equal $= \frac{a_{R_1}(s_1^2, \dots, s_l^2)}{a_{R_1}^2(s_1^2, \dots, s_l^2)}$ and ℓ we equalized across	nose also Vinning nd across firms
Theorem Suppose that unifility that (3, 2) is an intrahold L For every t ≠ consumers 2 For every t ≠	functions are strictly rise adiscarius. Then t', merginal rates of a $\frac{dm}{dm}(k_1^1, \dots, k_l^1)$ $\frac{dm}{dm}(k_2^1, \dots, k_l^1)$ t', technical rates of a $\frac{dm}{dm}(k_1^1, \dots, k_l^1)$ $\frac{dm}{dm}(k_1^1, \dots, k_l^1)$	monotone, differentiab (3, 2) is Parato efficient solutilution of any pair $\frac{m_{e}^{2}}{m_{e}^{2}}(\hat{e}_{1}^{2},, \hat{e}_{i}^{2})$ $\frac{m_{e}^{2}}{m_{e}^{2}}(\hat{e}_{1}^{2},, \hat{e}_{i}^{2})$ $\frac{m_{e}^{2}}{m_{e}^{2}}(\hat{e}_{1}^{2},, \hat{e}_{i}^{2})$ $\frac{m_{e}^{2}}{m_{e}^{2}}(\hat{e}_{1}^{2},, \hat{e}_{i}^{2})$	We, and quasi-concave. Support if <i>H</i> and only <i>H</i> all of the for- of commodifies are equalize $\frac{d_{2k}}{d_{2k}}(k_{1}^{2},,k_{l}^{2})$ $\frac{d_{2k}}{d_{2k}}(k_{1}^{2},,k_{l}^{2})$ and ℓ^{2} are equalized across $\frac{d_{2k}}{d_{2k}}(k_{1}^{2},,k_{l}^{2})$	nose also Nowing ed across firms
Theorem Suppose that utility that (\$i,3) is an intro- hold 1. For every t ≠ consumers. 2. For every t ≠ 1. For every t ≠ substitution	functions are strictly nine allocation. Then l^{ℓ} , marginal rates of a $\frac{\frac{\partial m_{\ell}}{\partial m_{\ell}}(x_{\ell}^{1},, x_{\ell}^{1})}{\frac{\partial m_{\ell}}{\partial m_{\ell}}(x_{\ell}^{1},, x_{\ell}^{1})}$ l^{ℓ} , tachnical rates of a $\frac{\frac{\partial m_{\ell}}{\partial m_{\ell}}(x_{\ell}^{1},, x_{\ell}^{1})}{\frac{\partial m_{\ell}}{\partial m_{\ell}}(x_{\ell}^{1},, x_{\ell}^{1})}$ l^{ℓ} , the marginal rates	manatome, differentials (\hat{s}, \hat{s}) is Parato efficient solution of any pair $\frac{\partial h_{ij}}{\partial x_{ij}}(\hat{s}_{ij}^2, \dots, \hat{s}_{ij}^2)$ $\frac{\partial h_{ij}}{\partial x_{ij}}(\hat{s}_{ij}^2, \dots, \hat{s}_{ij}^2)$ substitution of inputs l $\frac{\partial h_{ij}}{\partial h_{ij}}(\hat{s}_{ij}^2, \dots, \hat{s}_{ij}^2)$ $\frac{\partial h_{ij}}{\partial h_{ij}}(\hat{s}_{ij}^2, \dots, \hat{s}_{ij}^2)$ = of transformation is equilable	We, and quasi-conceive. Support if and only if all of the fa of commodities are equalize $=\frac{\frac{d_{in}}{d_{in}}(s_{i}^{i},\ldots,s_{i}^{i})}{\frac{d_{in}}{d_{in}}(s_{i}^{i}\ldots,s_{i}^{i})}$ $=\frac{d_{in}}{d_{in}}(s_{i}^{i}\ldots,s_{i}^{i})$ $=\frac{\frac{d_{in}}{d_{in}}(s_{i}^{i}\ldots,s_{i}^{i})}{\frac{d_{in}}{d_{in}}(s_{i}^{i}\ldots,s_{i}^{i})}$ used to the marginal rates of	nose also Nowing ed across forms
Theorem Suppose that unlike the field Image: the field I	functions are strictly near allocation. Then ℓ' , merginal rates of a $\frac{dm}{dm}(k_1^2, \dots, k_l^2)$ $\frac{dm}{dm}(k_1^2, \dots, k_l^2)$ $\frac{dm}{dm}(k_1^2, \dots, k_l^2)$ $\frac{dm}{dm}(k_l^2, \dots, k_l^2)$ ℓ' , the marginal rates $\frac{dm}{dm}(k_l^2, \dots, k_l^2)$	monotone, differentials (S, F) is Parato efficient edutibution of any pair $\frac{dm}{dm}(\hat{x}_1,, \hat{x}_1^2)$ $\frac{dm}{dm}(\hat{x}_1,, \hat{x}_1^2)$ $\frac{dm}{dm}(\hat{x}_1,, \hat{x}_1^2)$ $\frac{dm}{dm}(\hat{x}_1,, \hat{x}_1^2)$ $\frac{dm}{dm}(\hat{x}_1,, \hat{x}_1^2)$ $\frac{dm}{dm}(\hat{x}_1,, \hat{x}_1^2)$ $\frac{dm}{dm}(\hat{x}_1,, \hat{x}_1^2)$ $\frac{dm}{dm}(\hat{x}_1,, \hat{x}_1^2)$ $\frac{dm}{dm}(\hat{x}_1,, \hat{x}_1^2)$	let, and quasi-concurve. Support if and only of all of the fail only of all of the fail o	nose also Nonsing of across firms