Lecture6

Thursday, February 10,2022 11:48 AM

国

Lecture6

Lecture 6: General Equilibrium

A few things I forgot to say about economies with production

Robinson Crusoe
Two firms

General Economies with Many Consumers and Production

Lecture 6: General Equilibrium

A few things I forgot to say about economies with production
Robinson Crusoe

Two firms
General Economies with Many Consumers and Production

- Depending on the production plan, the size of the box can change
- Instead we work with what is called a production possibilities frontier

Lecture 6: General Equilibrium

A few things I forgot to say about economies with production
Robinson Crusoe

Two firms

General Economies with Many Consumers and Production
\qquad

Robinson Crusoe
7 wen fire
\qquad

- Imagine the problem of Robinson Crusoe, living alone in an island. He is the only producer and the only consumer

Suppose that the consumer (Robinson) has a utility function:
$u(L, x)$,
where x are coconuts. There is one firm (Robinson) that can convert labor to coconuts:
$f\left(L_{x}\right)$
The endowment is $(0, L)$

What is the Pareto optimal allocation in this economy?

What is the Pareto optimal allocation in this economy?

Or equivalently
$\max u(L, f(\bar{L}-L))$

Or equivalently

Using calculus... This is the order condition:

$$
\begin{aligned}
& \left.\frac{\partial u}{\partial L}(L, f(L-L))-\frac{\partial u}{\partial x}(L, f(\bar{L}-L))\right) f^{\prime}(\bar{L}-L)=0 \\
& \left.\frac{\partial u}{\partial L}(L, f(\bar{L}-L))=\frac{\partial u}{\partial x}(L, f(\bar{L}-L))\right) f^{\prime}(\bar{L}-L)
\end{aligned}
$$

Using calculus.. This is the order condition:

$$
\begin{aligned}
& \left.\frac{\partial u}{\partial L}(L, f(\bar{L}-L))-\frac{\partial v}{\partial x}(L, f(\bar{L}-L))\right) f^{\prime}(\bar{L}-L)=0 \\
& \frac{\partial u}{\partial L}(L, f(\tilde{L}-L))=\frac{\partial u}{\partial x}(L, f(\tilde{I}-L)) f^{\prime}(\tilde{L}-L)
\end{aligned}
$$

- If Robinson gives up 1 unit of consumption in $L, f^{\prime}(\bar{L}-L)$ describes how much
- If Robinson gives up 1 unit of consumption in $L, f^{\prime}(\bar{L}-L)$ describes how much more in terms of \times Robinson will be able to consume
- This is what is called a Marginal Rate of Transformation of good L to x

$$
f^{\prime}(L-L)=\frac{\frac{\partial u}{T M}(L . f(\bar{L}-L))}{\frac{\partial u}{\partial x}(L, f(\bar{L}-L))}=M R S_{L, x}
$$ $M R T_{L, x}=M R S_{L, x}$

We can solve the above graphically.

We can solve the above graphically. The set
We can solve the above graphically. The set

$$
\left\{(L, x): x \leq f\left(L_{x}\right), L_{x}+L \leq I\right\}
$$

describes the possible sets of bundles that Robinson could possibly consume in this
economy.
This is called the production possibilities set (PPS)
We can solve the above graphically. The set

$$
\left((L, x): x \leq f\left(L_{x}\right), L_{x}+L \leq L\right\}
$$

describes the possible sets of bundles that Robinson could possibly consume in this
economy.
This is called the production possibilities set (PPS)
The boundary of the PPS is theproduction possibilities frontier (PPF)
The frontier is basically described by the curve:
$x=f\left(L_{x}\right), L_{x} \in[0, \bar{L}]$.
W
The frontier is basically described by the curve:

$$
x=f\left(L_{x}\right), L_{x} \in[0, \bar{L}] \text {. }
$$

The maximization problem for finding Pareto efficient allocations simply amounts to
maximizing the utility of Robinson subject to being inside this constraint set.
To

```
Lecture 6:General Equilibrium
```



```
    Robinson Crusoe
        Econ 1 Intuition
        weflime
        Gmatucal Avgouth
        Csicilus Apumach!
        Calomit Ambuach 
```



```
        bocalgo the Mbvimizatum Plobilemr
```

- Recall that at a Pareto optimum, we found that we must have $M R T_{L, x}=M R S_{L, x}$

Suppose one is at an allocation where $M R T_{L, x}=2>M R S_{L, x}=1$

- Such an allocation cannot be a Pareto efficient allocation. Why?
- Recall that at a Pareto optimum, we found that we must have $M R T_{L, x}=M R S_{L, x}$
- Suppose one is at an allocation where $M R T_{L, x}=2>M R S_{L, x}=1$
- Such an allocation cannot be a Pareto efficient allocation. Why?
- One could potentially reorganize production to get an even better outcome for the consumer

Lecture 6: General Equilibrium

A few things I forgot to say about economies with production
$\xrightarrow{\text { Robinson Crusoe }}$
Two firms

General Economies with Many Consumers and Production

Lecture 6: General Equilibrium

Retifentrivic

Two firms

- The consumer has a utility function $u(x, y)$
- The consumer is endowed with 0 units of both x and y but x and y can be produced from labor and capital
- She is endowed with K units of capital and L units of labor
- There are two firms each of which produces a commodity x and y.
- Firm x produces x according to a production function f_{x} and firm y produces y according to a production function f_{y} :

$$
f_{x}\left(\ell_{x}, k_{x}\right), f_{y}\left(\ell_{y}, k_{y}\right) .
$$

Lecture 6: General Equilibrium


```
        A
    Two firms
        Graphical Approach
        Graphical Approach
        Calctus Apgroich I
```


To find the PPFF given that x units of commodity \times must be produced, what is the
maximum amount of y 's stat can be produced?

$$
\begin{aligned}
& \begin{array}{l}
\text { To find the PPF. given that } x \text { units of commodity } \times \text { lust be produced, what is the } \\
\text { maximum amount of } y \text { 's that can be produced? Thus }
\end{array} \\
& \text { maximum amount of } y^{\prime} \text { s that can be produced? Thus }
\end{aligned}
$$

$$
\begin{aligned}
& y=f_{y}\left(l_{y}, k_{y}\right)+\lambda\left(t_{x}\left(t-l_{y}, k-k_{z}\right)-\bar{x}\right) \\
& \frac{\partial y}{\partial y}=\frac{\partial f_{z}}{\partial l y}+\lambda \frac{\partial f_{x}}{L x}(-1)=0 \Rightarrow 1 \\
& \frac{\partial y}{\partial v_{y} y}=\frac{\partial y_{y}}{\partial k_{y}}+\lambda \frac{L_{x}}{\partial x x_{x}}(-1)=0 \quad \Rightarrow \\
& \text { Setting up the Lagrangian we get: } \\
& \left.\max _{1, L_{y}} f_{y}\left(\ell_{y}, k_{y}\right)+\lambda\left(f_{x}\left(L-\ell_{y}, K-k_{y}\right)-x\right)\right) \\
& \frac{\frac{\partial k_{y}}{\partial L_{y}}}{\frac{\partial f_{y}}{\partial k_{y}}}=\frac{\frac{\partial d_{x}}{\partial L_{x}}}{\frac{\partial d_{x}}{\partial k_{x}}} \Rightarrow \frac{\text { UmiDADEsK}}{\text { uniDABes } L} \\
& \text { TeST } x_{x}=\operatorname{THST} T_{y} \\
& z=T M S T_{x}>\text { TaSTy }=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lecture 6: General Equilibrium }
\end{aligned}
$$

We solve directly the original maximization problem.

\[\)| $\max u(x, y) \text { such that } x \leq f_{x}\left(\ell_{x}, k_{x}\right), y \leq f_{y}\left(\ell_{y}, k_{y}\right),$ |
| :--- |
| $L \geq \ell_{x}+\ell_{y}, K \geq k_{x}+k_{y} .$ |

\]

\[

\]

We can simplify the problem:
$\max _{L_{x}, u} u\left(f_{x}\left(\ell_{x}, k_{x}\right), f_{y}\left(L-\ell_{x}, K-k_{x}\right)\right)$

Then the first order conditions give us

Then the first order conditions give us:

We obtain:

$$
\begin{aligned}
T R S_{i, k}^{x} & =T R S_{i, k}^{\gamma} \\
M R S_{x, y} & =M R T_{x, y,}
\end{aligned}
$$

Lecture 6: General Equilibrium

Econ 1 Truithas
A concent example
Two firms

Culculan Appracici
Concrete Example

(T) Toblemi

Suppose that the utility function are given by:

$$
v(x, y)=\sqrt{x y}
$$

and suppose that the production functions are given by:

$$
f_{x}\left(\ell_{x}, k_{x}\right)=\sqrt{\ell_{x} k_{x}}, f_{y}\left(\ell_{y}, k_{y}\right)=\sqrt{\ell_{y} k_{y}}
$$

Then Pareto efficiency involves solving the following maximization-moblem:

$$
\max \sqrt{x y} \text { such that }\left|\begin{array}{r}
x=f_{x}\left(f_{x}, k_{x}\right), y=f_{y}=f_{y}\left(\ell_{y}, k_{y}\right) \\
l_{y}+L_{y}=\bar{L} \\
k_{x}+k_{y}=\bar{K}
\end{array}\right| \text { FACT } B(
$$

Approach 1: First lets characterize the PPF.
$\operatorname{PPF}(x)=m$ max $f_{y}\left(L-\ell_{x}, K-k_{x}\right)$ such that $f_{x}\left(\ell_{x,}, k_{x}\right)=x$.
$=M_{\text {My }}(L-L x)^{\text {m/ }}\left(k-k_{x}\right)^{1 / 2} \leq a L_{x} k_{x}=x$;

$$
\begin{aligned}
& r_{4 x}\left(L-L_{x}\right)^{1 / 2}\left(k-k_{2}\right)^{1 / 2}<a L_{2}^{*} k_{x}=x \\
& \frac{\partial y}{\partial L_{x}}=\frac{1}{2}\left(L-L_{x}\right)^{-1 / 2}(-1)\left(k-k_{x}\right)^{1 / 2}-\lambda\left(\frac{1}{2} L_{x}^{-14} k_{2}^{1 / k}\right)=0
\end{aligned}
$$

$$
\left.\begin{aligned}
& \frac{\partial y}{\partial L_{x}}=\frac{1}{2}\left(L-L_{x}\right)^{-1 / 2}(-1)\left(k-k_{x}\right)^{1 / 2}-\lambda\left(\frac{1}{2} L_{x}^{-14} k_{2}^{1 / k}\right)=0 \\
& \frac{\partial y}{\partial k_{x}}=\frac{1}{2}\left(L-L_{x}\right)^{1 / 2}\left(k-k_{x}\right)^{-1 / 2}(-1)-\lambda\left(\frac{1}{2} L_{x}^{\left.1 / k_{k}-k_{x}\right)}=0\right.
\end{aligned} \right\rvert\, \begin{aligned}
& \frac{\left(k-k_{x}\right)}{L-L_{x}}=\frac{k_{x}}{L_{x}} \\
& k L_{x}-k_{x} L_{x}=k_{x} L-k_{x} L_{x} \\
& L L_{x}=k_{x} \frac{L}{1}
\end{aligned}
$$

By the first order condition, we need:

$$
\frac{k_{x}^{*}}{e_{x}^{*}}=\frac{\frac{\partial f_{x}}{\frac{\partial}{x}}\left(\ell_{x}^{*}, k_{x}^{*}\right)}{\frac{\partial \sigma_{k}}{\partial k}\left(\ell_{x}^{*}, k_{x}^{*}\right)}=\frac{\frac{\partial K_{1}}{\partial}\left(L-\ell_{x}, K-k_{x}^{*}\right)}{\frac{\partial f_{x}}{\partial k}\left(L-\ell_{x}, K-k_{x}^{*}\right)}=\frac{K-k_{x}^{*}}{L-\ell_{x}^{*}} \Rightarrow K_{x}^{*}=\frac{K}{L} C_{x}^{c} .
$$

Plug this back into the constraint:

$$
f_{x}\left(l_{x}, k_{x}^{*}\right)=x \Longrightarrow \sqrt{\ell_{x} k_{x}}=x \Longrightarrow \varepsilon_{x}^{*}=\sqrt{\frac{L}{K}} x
$$

Therefore

$$
\begin{array}{r}
f_{y}\left(L-\ell_{x}, K-k_{x}\right) \\
\sqrt{\left(L-\sqrt{\frac{L}{K}} x\right)\left(K-\sqrt{\frac{K}{L}} x\right)}=y \\
P P F(x)=(\sqrt{K L}-x)
\end{array}
$$

\qquad

$$
\max _{\substack{\max \sqrt{x y} \text { such that } y=\sqrt{K L}-x \\ x,}}^{\text {FP P }}
$$

$$
\begin{aligned}
& y=\sqrt{x y}+\lambda(y-\sqrt{k L}+x) \\
& \frac{\partial y}{\partial x}=\frac{1}{2} x^{-1 / 2} y^{1 / 2}+\lambda=0 \Rightarrow \frac{y}{x}=t
\end{aligned}
$$

$$
\frac{\partial y}{\partial y}=\frac{1}{2} x^{1 / 2} y^{-1 / 2}+\lambda=0 \quad, \quad y=x
$$

The Pareto efficient allocation is given by:

$$
\left(x^{\prime}=y^{\prime}=\frac{1}{2} \sqrt{K L}, e_{x}=C_{y}=\frac{1}{2} L, k_{x}^{\prime}=k_{j}^{\prime}=\frac{1}{2} k\right) .
$$

$$
\begin{aligned}
& y=\sqrt{k L}-x \\
& \frac{2 x=\sqrt{k L}}{x=\frac{1}{2} \sqrt{k L}}
\end{aligned}
$$

Lecture 6: General Equilibrium

A few things I forgot to say about economies with production

Robinson Crusoe
Two firms
General Economies with Many Consumers and Production
Lecture 6: General Equilibrium
General Economies with Many Consumers and Production

The set of Pareto efficient allocations will be characterized by the following
maximization problem:

$$
\begin{aligned}
& \left.u_{1}\left(x_{1}^{\prime} \ldots \ldots x_{1}^{\prime}\right) \geq u_{1}-u\left(x_{1}^{\prime} \ldots \ldots \alpha_{1}^{\prime}\right)\right\} \begin{array}{l}
\text { A NADIE. } \\
\text { A }
\end{array}
\end{aligned}
$$

