Lecture7

jueves, 17 de febrero de 2022 01:13 p. m.

8
Lecture7

Lecture 7: Monopoly

Introduction

Elasticities

Monopoly

Lecture 7: Monopoly
ntroduction

Elasticities

Monopoly

Firm is faced a problem like the following:

$$
\max _{K, L} p_{x} f_{x}(L, K)-w L-r K .
$$

- The firm's choice of L and K does not affect the prices p, w, r
- This is called price-taking behavior
- Justified if the the market is composed of many small firms
- In many markets there is a single firm
- Since supply is completely controlled by the firm, it can use this in its favor
- Profit maximization condition,

$$
\max _{K, L} p f_{x}(K, L)-w L-r K
$$

- Profit maximization condition,

$$
\max _{K, L} p f_{x}(K, L)-w L-r K .
$$

\Rightarrow If
$c(x)=\min _{K, L} w L+r K$ such that $f_{x}(K, L)=x$
then the above is equivalent to
$\max _{x} p x-c(x)$

- When firm controls supply, th

- When firm controls supply, then
$\max _{x} \mathbf{p}(\mathbf{x}) x-c(x)$
- Consumers willingness to pay is given by the demand function

$\max _{p} p q(p)-c(q(p))$
- $q(p)$ is the inverse demand function

Lecture 7: Monopoly
Introduction
Elasticities
Monopoly

Elasticities

- Revenue: $\mathrm{R}(\mathrm{q})=\mathrm{p}(\mathrm{q}) \mathrm{q}$
Elasticities
Revenue: $\mathrm{R}(\mathrm{q})=\mathrm{p}(\mathrm{q}) \mathrm{q}$

$$
\frac{d R}{d q}=p(q)+q \frac{d \rho}{d q}(q)=p(q)\left(1+\frac{1}{\varepsilon_{q, p}}\right)
$$

$\rightarrow \quad$

Elasticities

- Revenue: $R(q)=p(q) q$
$-$

$$
\frac{d R}{d q}=p(q)+q \frac{d p}{d q}(q)=p(q)\left(1+\frac{1}{\varepsilon_{q, p}}\right)
$$

-

$$
\frac{d R}{d q}>0 \Longleftrightarrow 1>-\frac{1}{\varepsilon_{q, p}} \Longleftrightarrow \varepsilon_{q, p}<-1 .
$$

- If $\varepsilon_{q, p} \in(-1,0)$, the demand is inelastic
- An increase in price leads a small decrease in demand
- An increase in quantity leads to a big decrease in pric
- If $\varepsilon_{q, p}<-1$, then demand is elastic
- An increase in price leads a big decrease in demand
- An increase in quantity leads to a small decrease in price

Elasticities
 - What kind of demand functions have constant elasticities of demand with respect to price?

Elasticities

- What kind of demand functions have constant elasticities of demand with respect to price?
- Suppose that the demand function is of constant elasticity κ
$\stackrel{\rightharpoonup}{*}$

$$
\frac{d q p}{d p} \frac{p}{q}=\kappa<0 .
$$

Elasticities

- What kind of demand functions have constant elasticities of demand with respect to price?
- Suppose that the demand function is of constant elasticity k
$\stackrel{\rightharpoonup}{*}$

$$
\frac{d q \rho}{d p q}=\kappa<0 .
$$

$-$

$$
\frac{1}{q} \frac{d q}{d \rho}=\kappa \frac{1}{\rho} \Longrightarrow \frac{d}{d p} \log q(p)=\frac{d}{d \rho} \log p^{\prime \prime} .
$$

Elasticities

- What kind of demand functions have constant elasticities of demand with respect to price?
- Suppose that the demand function is of constant elasticity κ

$-$
- By the fundamental theorem of calculus:

- What kind of demand functions have constant elasticities of demand with respect to price?
- Suppose that the demand function is of constant elasticity κ
$-$

$$
\frac{d q p}{d p}=\kappa<0 .
$$

$$
\frac{1}{q} \frac{d q}{d \rho}=\kappa \frac{1}{\rho} \Longrightarrow \frac{d}{d p} \log q(\rho)=\frac{d}{d p} \log \rho^{n} .
$$

- By the fundamental theorem of calculus:
$\log q(p)=C+\log p^{\kappa}$.
- $q(p)=e^{c} p^{\kappa}$ or $q(p)=A \rho^{k}$ for some A.

Lecture 7: Monopoly

Introduction

Elasticities

Monopoly

Lecture 7: Monopoly

- We want to study the problem:

$$
\max _{q} R(q)-c(q)
$$

$$
\frac{\partial \pi}{\partial q}=\frac{\partial \nabla(q)}{\partial g}-\underbrace{\frac{\operatorname{cog}}{\partial q}}_{\frac{\partial c}{\operatorname{cog}(q)}}=0
$$

- We want to study the problem:

$$
\max _{q} R(q)-c(q)
$$

- The first order condition tells us:
- We want to study the problem:
-The first order condition tells us: $\frac{d R}{d q}=\frac{d c}{d q}=\int_{p(q)}\left(1+\frac{1}{\varepsilon_{q, p}}\right)=\frac{d c}{d q}>0$.
- This implies

$$
1+\frac{1}{\varepsilon_{q, p}}>0 \Leftrightarrow \varepsilon_{Q, p}<-1 .
$$

$$
1+\frac{1}{\varepsilon_{q, p}}>0 \Leftrightarrow \varepsilon_{q, p}<-1
$$

A monopoly firm always produces at a point where demand is elastic

$$
1+\frac{1}{\varepsilon_{q, p}}>0 \Longleftrightarrow \varepsilon_{q, p}<-1
$$

- A monopoly firm always produces at a point where demand is elastic
- If the firm produced at a point where demand was inelastic
- At such a point $\frac{d R}{d a}<0$
- By reducing quantity (or raising the price) it could increase revenue and decrease costs simultaneously
- This strictly increases the profits

$$
\begin{aligned}
& \operatorname{Mu}(\varepsilon)=\frac{\varepsilon}{\varepsilon+1} \\
& \lim _{\varepsilon \rightarrow-\infty} n \cup(\varepsilon)=1 \\
& \lim _{\varepsilon \rightarrow-\wp^{-}} \frac{\varepsilon}{\varepsilon+1}=+\infty
\end{aligned}
$$

- We can simplify to:

$$
p(q)=\frac{1}{1+\frac{1}{\sigma_{4, p}}} \frac{d c}{d q}
$$

- We can simplify to:

$$
p(q)=\frac{1}{1+\frac{1}{\delta_{4,0}} d q} d c
$$

- Since $\varepsilon_{q, p}<-1$, then

$$
p=\frac{1}{1+\frac{1}{\sigma_{4 q}}} \frac{d c}{d q}>\frac{d c}{d q} .
$$

- We can simplify to:

$$
p(q)=\frac{1}{1+\frac{1}{\sigma_{q, 0}}} \frac{d c}{d q} .
$$

- Since $\varepsilon_{q, p}<-1$, then

$$
p=\frac{1}{1+\frac{1}{t_{0 . p}}} \frac{d c}{d q}>\frac{d c}{d q} .
$$

- The firm always sets a price that is strictly above marginal cost
- We can simplify to:

$$
p(q)=\frac{1}{1+\frac{1}{\epsilon_{4, p}}} \frac{d c}{d q} .
$$

- Since $\varepsilon_{q, p}<-1$, then

$$
p=\frac{1}{1+\frac{1}{\epsilon_{0,0}}} \frac{d c}{d q}>\frac{d c}{d q}
$$

- The firm always sets a price that is strictly above marginal cost
- There is a mark-up above marginal cost at the profit maximizing price
- We can simplify to:

$$
p(q)=\frac{1}{1+\frac{1}{\varepsilon_{4, e}} \frac{d c}{d q},}
$$

- Since $\varepsilon_{q, \rho}<-1$, then

$$
p=\frac{1}{1+\frac{1}{6_{4} \cdot}} \frac{d c}{d q}>\frac{d c}{d q} .
$$

- The firm always sets a price that is strictly above marginal cost
- There is a mark-up above marginal cost at the profit maximizing price
- The amount produced q is below the quantity where $p=M C$

- The above analysis already illustrates an important point against monopolies
- Both consumer surplus and total surplus is less than is socially optimal
- The above analysis already illustrates an important point against monopolies
- Both consumer surplus and total surplus is less than is socially optimal
- Thus the pricing policies used by monopolies are inefficient, leading to what is called "dead-weight loss"

- Demand function has constant elasticity of demand $\left(q(p)=A p^{\kappa}\right)$

$$
\begin{array}{ll}
E C^{Q}=F+E+D+6+H & E C^{n}=6+H \\
E P^{C P}=A+B+C & E P^{n}=F+E+A+B \\
E S: A+B+C D+E+F+6+1+ & E S: A+B+E+F+6++1 \\
& P B S=C+D
\end{array}
$$

- Demand function has constant elasticity of demand $\left(q(\rho)=A p^{\kappa}\right)$
-

$$
\max _{p} p q(p)-c(q(p))
$$

-

$$
p=\frac{1}{1+\frac{1}{\varepsilon_{0} \rho}} \frac{d c}{d q}=\frac{1}{1+\frac{1}{n}} \frac{d c}{d q} .
$$

- Demand function has constant elasticity of demand $\left(q(p)=A p^{\wedge}\right)$
-

$$
\max _{p} p q(p)-c(q(p))
$$

-

$$
p=\frac{1}{1+\frac{1}{2 \Leftrightarrow g}} \frac{d c}{d q}=\frac{1}{1+\frac{1}{\pi}} \frac{d c}{d q} .
$$

- Has a solution if and only if $\kappa<-1$
- Demand function has constant elasticity of demand $\left(q(p)=A p^{\kappa}\right)$
$-$

$$
\max _{p} p q(p)-c(q(p))
$$

-

$$
\rho=\frac{1}{1+\frac{1}{\epsilon 0, \theta}} \frac{d c}{d q}=\frac{1}{1+\frac{1}{n}} \frac{d c}{d q} .
$$

- Has a solution if and only if $\kappa<-1$
- If $\kappa \geq-1$, then the firm always prefer to increase the price (no solution)
- Demand function has constant elasticity of demand $\left(q(p)=A p^{\kappa}\right)$
-

$$
\max _{p} p q(p)-c(q(p))
$$

-

$$
p=\frac{1}{1+\frac{1}{5, p}} \frac{d c}{d q}=\frac{1}{1+\frac{1}{\kappa}} \frac{d c}{d q} .
$$

- Has a solution if and only if $\kappa<-1$
- If $\kappa \geq-1$, then the firm always prefer to increase the price (no solution)
- If marginal costs are constant at c
- Demand function has constant elasticity of demand $\left(q(p)=A p^{\kappa}\right)$
-

$$
\max _{p} p q(p)-c(q(p))
$$

$\stackrel{\rightharpoonup}{*}$

$$
p=\frac{1}{1+\frac{1}{\varepsilon_{0, s}}} \frac{d c}{d q}=\frac{1}{1+\frac{1}{\kappa}} \frac{d c}{d q} .
$$

- Has a solution if and only if $\kappa<-1$
- If $\kappa \geq-1$, then the firm always prefer to increase the price (no solution)
- If marginal costs are constant at c
-

$$
p=\frac{c}{1+\frac{1}{\kappa}} \Rightarrow q(p)=A\left(\frac{c}{1+\frac{1}{\kappa}}\right)^{\kappa} \text {. }
$$

If profits are positive, why aren't more firms entering the market?

- Natural monopoly (Microsoft)
- Patents
- Political Lobbying: Televisa, Azteca, etc.
- Regulation (Moody and S \& P's)
- Demand externalities
- Classic network externalities (Microsoft): Microsoft Word and Windows are only valuable if a lot of consumers use it.
- Two-sided markets (Ticketmaster or Uber): consumers value these markets only if there is enough supply of tickets. Similarly suppliers only value these markets if there is demand to meet the supply.

