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Although p is determined from the interaction of all agents (aggregate supply =
aggregate demand)

Definition (Strategic Interaction)
There is strategic interaction when an agent takes into account how her actions affect
other individuals and how other's action affect her

» Originally, game theory was developed to design optimal strategies in games like
chess or poker

Definition (Strategic Interaction)
There is strategic interaction when an agent takes into account how her actions affect
other individuals and how other's action affect her

» Originally, game theory was developed to design optimal strategies in games like
chess or poker

» However, it allows to study a wide range of situations that were did not fit in
traditional microeconomics theory
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> In 1944, von Neumann and Oscar Morgenstern published their classic book,
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» In the early 1950's, John Nash made his seminal contributions to non-zero-sum
games and started bargaining theory

> In 1967-1968, John Harsanyi formalized methods to study games of incomplete
information

» In the 1970s, game theory became part of main stream economics (and other
social sciences)
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A game is the description of a strategic situation. To describe a game we need to
describe the following elements:

» Players or participants: The agents that take decisions in the game
» The rule of the game: a) What actions are available to each player (at each
decision point), and b) the order in which players take those actions

» The information available to each player
> How the results of the game depends on the actions taken by each individual

» How individuals value the results of the game

A few examples

Example (Matching pennies (pares y nones) — Sequential)

Two players, Ana & Bart, choose whether to show one or two fingers. First, Ana shows
fingers to Bart, then Bart, after observing Ana’s play, chooses how many fingers to
show. If the total number of fingers is even, then Bart pays Ana 1,000 MXN. If the
total number of fingers is odd, then Ana pays Bart 1,000 MXN.

A few examples

Example (Matching pennies (pares y nones) — Simultaneous)

Two players, Ana & Bart, choose whether to show one or two fingers simultaneously. If
the total number of fingers is even, then Bart pays Ana 1,000 MXN. If the total
number of fingers is odd, then Ana pays Bart 1,000 MXN.
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Assume there are three agents with utility functions:
u(x) = In(x + 51), u?(x) = x + 51, u3(x) = e*+51

v

All 3 agents have the “same preferences”
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Utility Lottery 1 Lottery 2

Eu™ [ 05In(56) + 05In(46) ~3.92 | 0.5In(101) +0.5In(1) ~ 2.3
Ev? 0.5(56) + 0.5(46) = 51 0.5(101) + 0.5(1) = 51
Eu’ | 0.5¢ +0.5¢" ~1.04 x 10* | 0.5¢'” + 0.5¢' ~3.65 x 10”

> If x* = arg maxeer Eu(x)
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> Then x* = argmaxyer Eau(x) + b

» Proof that linear (or afine) transformations of the utility function represent the
same preferences under uncertainty.
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Let's see with an example

Suppose there are 3 players and “god” places a hat over them

The hat can be white or black

All 3 individuals can see the hat the other two are wearing, but not their own

All hats are white, but no one knows their own color (just that it's black or white)

Now they go around trying to guess their own color. If they get it correctly they
earn all sorts of riches, but if they don’t they die. They can either guess or pass

What happens?

They go around for ever saying “pass”

Mow suppose “god” says: There is at least one white hat
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They already knew there was at least a white hat (they knew there were at least
two)

» They already knew everyone knew there was at least a white hat

» Now they all now, that everyone knows, that everyone knows (ad infinitum) that
there is a white hat.
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» This highlights the difference between mutual knowledge e common knowledge

» We say Y is common knowledge when all players know Y, and they all know that
everyone knows Y, and they all know that everyone knows that everyone knows
Y.... ad infinitum

» We will always assume things are common knowledge (there are some extensions
to the cases when utility functions are not common knowledge)
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Notation

We will use the following notation:
> Game participants (players) will be denoted by index i, where i = 1,.., N and
there are N players.
> A; is the space of possible actions for individual i. a; € A; is an action
> If we have a vector a = (a1, ..., 3j-1, 3}, i1, ooy ay), then we will denote by
a_j = (a1, 3j-1, i 10 s ay)y a=(aj,a).
> S; is the strategy space for individual /. s; € S; is a strategy.

> A strategy is a complete action plan. i.e., is an action for every possible
contingency of the game a player may face.

> ul is the utility of player i. (s, s_;), i.e., the utility of player i may depend on
her strategy, as well as the strategy of other players.
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Strategies Vs Actions
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> A strategy for Ana is an action (she chooses first, and thus faces a single
contingency) Sana = Aana

> For Bart, a strategy has an action for the two contingencies he may face (1) if

Ana chooses 1 finger, (2) if Ana chooses 2 fingers
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> A strategy is a complete action plan.

> The difference between strategy and actions is VERY important
» Think of matching pennies — Sequential.

» The actions for both individuals are A; = {1,2}

> A strategy for Ana is an action (she chooses first, and thus faces a single
contingency) Sana = Aana

> For Bart, a strategy has an action for the two contingencies he may face (1) if
Ana chooses 1 finger, (2) if Ana chooses 2 fingers

> Spe = {(11),(12),(2:1). (2.2)}
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