Lecture13 Tuesday, March 28, 2023 11:39 AM

# Lecture13

# Lecture 13: Game Theory $//\ Nash$ equilibrium

Mauricio Romero

# Lecture 13: Game Theory // Nash equilibrium

Examples - Continued

# Lecture 13: Game Theory // Nash equilibrium

Examples - Continued

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued Cournot - Revisited Bertrand Competition - Different costs Bertrand Competition - 3 Firms Hotelling and Voting Models

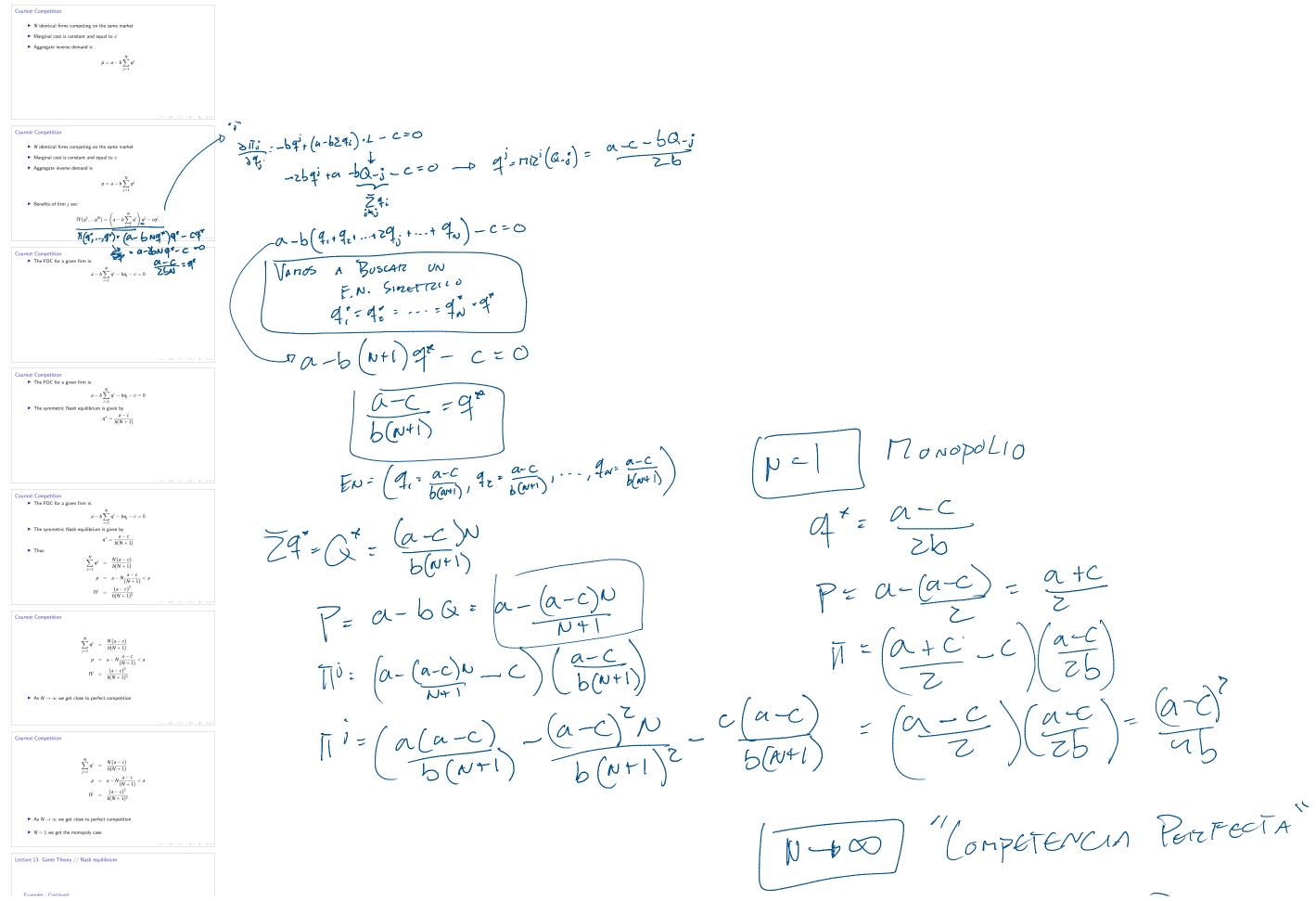
## Cournot Competition

N identical firms competing on the same market

# Cournot Competition

N identical firms competing on the same market

# Marginal cost is constant and equal to c





Z FIRMAS Crig=C Pi = P-i - to Tobos Ce Comprehen a "i" P-i CPC - Tobos Comprehen a "-i" P-i= Pi - De Tepanten EL "rebo Ili= (Pi-C)Qi(Pi) Pi = P-i (Pi-C)Qi(Pi) Pi = P-i Z

$$(P_{i}-c) \odot (P_{i}) = P_{i} = P_{i}$$

$$P_{i}$$

$$Lim A_{j} = a - C$$

$$Lim A_{j} = a - C$$

$$b(n+1)$$

$$Lim Q^{*} = (a - C)n$$

$$b(n+1)$$

$$Lim P = a - (a - C)$$

$$V = a$$

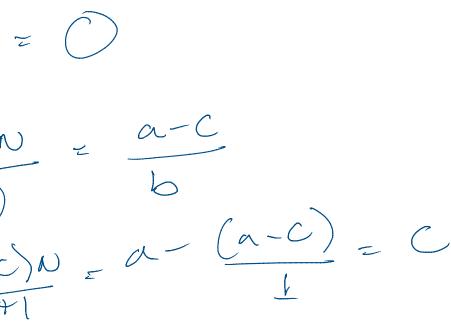
$$V = a$$

$$Lim P = a - (a - C)$$

$$V = a$$

$$Lim P = a - (a - C)$$

$$V = a$$



| Bertrand Competition                                |                 |
|-----------------------------------------------------|-----------------|
| Case 1: $\rho_1^* > \rho^m$                         |                 |
| $\blacktriangleright \ p_2^* = \rho^m$              |                 |
|                                                     |                 |
|                                                     |                 |
|                                                     |                 |
|                                                     |                 |
|                                                     | (0) (8) (2) (2) |
| Bertrand Competition                                |                 |
| <b>Case 1:</b> $p_1^* > p^m$                        |                 |
|                                                     |                 |
| $\blacktriangleright \ \rho_2^* = \rho^m$           |                 |
| $\blacktriangleright BR_2(p^m) = p^m - \varepsilon$ |                 |
|                                                     |                 |
|                                                     |                 |
|                                                     |                 |
|                                                     | (0) (0) (2) (2) |
| Bertrand Competition                                |                 |
| <b>Case 1:</b> $p_1^* > p^m$                        |                 |
|                                                     |                 |

 $\blacktriangleright p_2^* = p^m$ 

►  $BR_2(p^m) = p^m - \varepsilon$ 

►  $BR_1(p^m - \varepsilon) = p^m - 2\varepsilon$ 

Bertrand Competition

Case 1:  $p_1^* > p^m$ 

 $\blacktriangleright \ p_2^* = p^m$ 

►  $BR_2(p^m) = p^m - \varepsilon$ 

▶  $BR_1(p^m - \varepsilon) = p^m - 2\varepsilon$ 

► So this cannot be a Nash equilibrium

Bertrand Competition

**Case 2:**  $p_1^* \in (c, p^m]$ 

•  $BR_2(p_1^*) = p_1^* - \varepsilon$ 

Bertrand Competition

**Case 2:**  $p_1^* \in (c, p^m]$ 

 $\blacktriangleright BR_2(p_1^*) = p_1^* - \varepsilon$ 

 $\blacktriangleright BR_1(p_1^* - \varepsilon) = p_1^* - 2\varepsilon$ 

Bertrand Competition

**Case 2:**  $p_1^* \in (c, p^m]$ 

•  $BR_2(p_1^*) = p_1^* - \varepsilon$ 

•  $BR_1(p_1^* - \varepsilon) = p_1^* - 2\varepsilon$ 

So this cannot be a Nash equilibrium

# Bertrand Competition Case 3: $p_1^* < c$ ▶ $BR_2(p_1^*) \in [p_1^* + \varepsilon, \infty)$ Bertrand Competition Case 3: $p_1^* < c$ ▶ $BR_2(p_1^*) \in [p_1^* + \varepsilon, \infty)$ So this cannot be a Nash equilibrium Bertrand Competition Case 4: $p_1^* = c$ ▶ $BR_2(p_1^*) = (c, +\infty)$ Bertrand Competition **Case 4:** $p_1^* = c$ ▶ $BR_2(p_1^*) = (c, +\infty)$ $\blacktriangleright$ The unique pure strategy Nash equilibrium is $p_1^*=p_2^*=c$ Bertrand Competition Thus in contrast to the Cournot duopoly model, in the Bertrand competition model, two firms get us back to perfect competition $(\rho=c)$ $C_1 \in C_2$ Lecture 13: Game Theory // Nash equilibrium Examples - Continued Bertrand Competition - Different costs Bertrand Competition - different costs Suppose that the marginal cost of firm 1 is equal to c1 and the marginal cost of firm 2 is equal to c2 where c1 < c2.</p> The best response for each firm: $BR_i(p_{-i}) = \begin{cases} \rho_m^i & \text{if } p_{-i} > \rho_m^i, \\ p_{-i} - \varepsilon & \text{if } c_i < p_{-i} \le \rho_m^i, \\ [c_i, +\infty) & \text{if } p_{-i} = c_i \\ (p_{-i}, +\infty) & \text{if } p_{-i} < c_i. \end{cases}$ Bertrand Competition - different costs

▶ If  $p_2^* = p_1^* = c_1$ , then firm 2 would be making a loss

Ci Ce Province Province SI Province NO Ci Ce Ci Ce No TIENE E.N.

Proces Discizetos

# Bertrand Competition - different costs

 $\blacktriangleright~$  If  $\rho_2^*=\rho_1^*=c_1$  , then firm 2 would be making a loss

# Bertrand Competition - different costs

▶ If  $p_2^* = p_1^* = c_1$ , then firm 2 would be making a loss

 $\blacktriangleright~$  If  $\rho_2^*=\rho_1^*=c_2$  , then firm 1 would cut prices to keep the whole market

Bertrand Competition - different costs

▶ If  $p_2^* = p_1^* = c_1$ , then firm 2 would be making a loss

 $\blacktriangleright~$  If  $p_2^*=p_1^*=c_2$  , then firm 1 would cut prices to keep the whole market

▶ Any pure strategy NE must have  $p_2^* \le c_1$ . Otherwise, if  $p_2^* > c_1$  then firm 1 could undercut  $p_2^*$  and get a positive profit

Bertrand Competition - different costs

 $\blacktriangleright~$  If  $p_2^*=p_1^*=c_1$  , then firm 2 would be making a loss

 $\blacktriangleright~$  If  $p_2^*=p_1^*=c_2$  , then firm 1 would cut prices to keep the whole market

▶ Any pure strategy NE must have  $p_2^* \le c_1$ . Otherwise, if  $p_2^* > c_1$  then firm 1 could undercut  $p_2^*$  and get a positive profit

Firm 1 would really like to price at some price p<sub>1</sub><sup>\*</sup> just below the marginal cost of firm 2, but wherever p<sub>2</sub> is set, Firm 1 would try to increase prices

### Bertrand Competition - different costs

▶ If  $\rho_2^* = \rho_1^* = c_1$ , then firm 2 would be making a loss

 $\blacktriangleright$  If  $p_2^*=p_1^*=c_2$  , then firm 1 would cut prices to keep the whole market

► Any pure strategy NE must have p<sup>\*</sup><sub>2</sub> ≤ c<sub>1</sub>. Otherwise, if p<sup>\*</sup><sub>2</sub> > c<sub>1</sub> then firm 1 could undercut p<sup>\*</sup><sub>2</sub> and get a positive profit

▶ Firm 1 would really like to price at some price p<sub>1</sub><sup>\*</sup> just below the marginal cost of firm 2, but wherever p<sub>2</sub> is set. Firm 1 would try to increase prices

No NE because of continuous prices

Bertrand Competition - discreet prices  $\blacktriangleright \text{ Suppose } c_1 = 0 < c_2 = 10$ > 10. 9,10 8, **`**7, Bertrand Competition - discreet prices (6,7 Pe te ▶ Suppose c<sub>1</sub> = 0 < c<sub>2</sub> = 10 Firms can only set integer prices.

(tracios )iscize(0)

### Bertrand Competition - discreet prices

► Suppose  $c_1 = 0 < c_2 = 10$ 

Firms can only set integer prices.

 $\blacktriangleright$  Suppose that  $(p_1^*,p_2^*)$  is a pure strategy Nash equilibrium...

Bertrand Competition - discreet prices

**Case 1:**  $p_1^* = 0$ 

 $\blacktriangleright$  Best response of firm 2 is to choose some  $\rho_2^* > \rho_1^*$ 

(C) (Ø)

Bertrand Competition - discreet prices

Case 1:  $p_1^* = 0$ 

 $\blacktriangleright$  Best response of firm 2 is to choose some  $p_2^* > p_1^*$ 

▶  $p_1^*$  cannot be a best response to  $p_2^*$  since by setting  $p_1 = p_2^*$  firm 1 would get strictly positive profits

•••

# Bertrand Competition - discreet prices

**Case 2:**  $p_1^* \in \{1, 2, \dots, 9\}$ 

▶ Best response of firm 2 is to set any price  $p_2^* > p_1^*$ 

Bertrand Competition - discreet prices

**Case 2:**  $p_1^* \in \{1, 2, \dots, 9\}$ 

▶ Best response of firm 2 is to set any price  $p_2^* > p_1^*$ 

▶ If  $p_2^* > p_1^* + 1$ , then this cannot be a Nash equilibrium since then firm 1 would have an incentive to raise the price

< m >

Bertrand Competition - discreet prices

**Case 2:**  $p_1^* \in \{1, 2, \dots, 9\}$ 

 $\blacktriangleright$  Best response of firm 2 is to set any price  $p_2^* > p_1^*$ 

 $\blacktriangleright~$  If  $\rho_2^* > \rho_1^* + 1,$  then this cannot be a Nash equilibrium since then firm 1 would have an incentive to raise the price

▶ The only equilibrium is  $(p_1^*, p_1^* + 1)$ 

(D) (Ø) (2)

Bertrand Competition - discreet prices

Case 3:  $\rho_1^* = 10$ 

▶ Best responses of firm 2 is to set any price  $p_2^* \ge p_1^*$ 

(5) (5) (8) (0)

# Bertrand Competition - discreet prices

# **Case 3:** $p_1^* = 10$

▶ Best responses of firm 2 is to set any price  $\rho_2^* \ge \rho_1^*$ 

It cannot be that ρ<sup>\*</sup><sub>2</sub> = ρ<sup>\*</sup><sub>1</sub> since then firm 1 would rather deviate to a price of 9 and control the whole market:

# $\frac{1}{2}(10) = 5 < 9.$

## Bertrand Competition - discreet prices

**Case 3:**  $p_1^* = 10$ 

▶ Best responses of firm 2 is to set any price  $p_2^* \ge p_1^*$ 

It cannot be that p<sup>5</sup><sub>2</sub> = p<sup>\*</sup><sub>1</sub> since then firm 1 would rather deviate to a price of 9 and control the whole market:  $\frac{1}{2}(10) = 5 < 9.$ 

 $\blacktriangleright$  We must have  $\rho_1^s=\rho_1^s+1$  since otherwise, firm 1 would have an incentive to raise the price higher

Bertrand Competition - discreet prices

### **Case 3:** $p_1^* = 10$

▶ Best responses of firm 2 is to set any price  $p_2^* \ge p_1^*$ 

It cannot be that ρ<sup>2</sup><sub>2</sub> = ρ<sup>\*</sup><sub>1</sub> since then firm 1 would rather deviate to a price of 9 and control the whole market:

# $rac{1}{2}(10) = 5 < 9.$

▶ We must have p<sup>\*</sup><sub>1</sub> = p<sup>\*</sup><sub>1</sub> + 1 since otherwise, firm 1 would have an incentive to raise the price higher

•  $(p_1^*, p_2^*) = (10, 11)$  is a Nash equilibrium

Bertrand Competition - discreet prices

**Case 4:**  $\rho_1^* = 11$ 

Best response of firm 2 is to set p<sup>\*</sup><sub>2</sub> = 11

# Bertrand Competition - discreet prices

# **Case 4:** $\rho_1^* = 11$

▶ Best response of firm 2 is to set  $p_2^* = 11$ 

 $\blacktriangleright$  Firm 1 would not be best responding since by setting a price of  $\rho_1=$  10, it would get strictly positive profits

# Bertrand Competition - discreet prices

**Case 5:**  $p_1^* \ge 12$ 

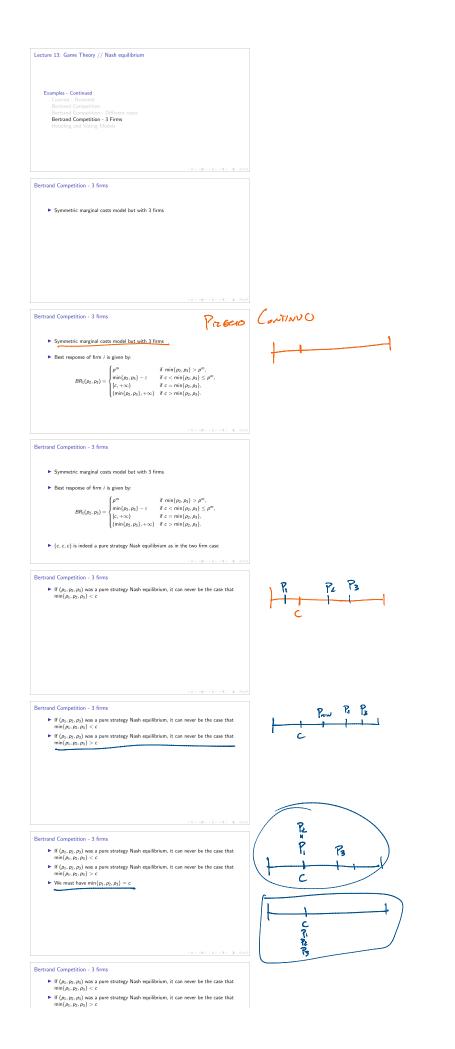
 $\blacktriangleright$  Firm 2's best response is to set either  $\rho_2^*=\rho_1^*-1$  or  $\rho_2^*=\rho_1^*$ 

Bertrand Competition - discreet prices

# **Case 5:** $p_1^* \ge 12$

# ▶ Firm 2's best response is to set either $p_2^* = p_1^* - 1$ or $p_2^* = p_1^*$

Firm 1 is not best responding since by lowering the price it can get the whole market.



### Bertrand Competition - 3 firms

- $\blacktriangleright~$  If  $(p_1,p_2,p_3)$  was a pure strategy Nash equilibrium, it can never be the case that  $\min\{p_1,p_2,p_3\} < c$
- $\blacktriangleright$  If  $(p_1,p_2,p_3)$  was a pure strategy Nash equilibrium, it can never be the case that  $\min\{p_1,p_2,p_3\}>c$
- ▶ We must have min{p<sub>1</sub>, p<sub>2</sub>, p<sub>3</sub>} = c
- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c?

### Bertrand Competition - 3 firms

- ▶ If ( $p_1, p_2, p_3$ ) was a pure strategy Nash equilibrium, it can never be the case that min{ $p_1, p_2, p_3$ } < c

- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c?

## Bertrand Competition - 3 firms

- ▶ If ( $p_1, p_2, p_3$ ) was a pure strategy Nash equilibrium, it can never be the case that min( $p_1, p_2, p_3$ ) < c
- $$\label{eq:constraint} \begin{split} &\inf \left(p_1,p_2,p_3\right) < c \end{split}$$
   If  $(p_1,p_2,p_3)$  we a pure strategy Nash equilibrium, it can never be the case that  $&\min \{(p_1,p_2,p_3) > c \end{split}$  We must have  $\min\{p_1,p_2,p_3\} = c$

- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c? No since that firm would want to raise his price a bit and get strictly better profits
- There must be at least two firms that set price equal to marginal cost

# Bertrand Competition - 3 firms

- ▶ If  $(p_1, p_2, p_3)$  was a pure strategy Nash equilibrium, it can never be the case that  $min(p_1, p_2, p_3) < c$
- $$\begin{split} &\inf_{(p_1,p_2,p_3)} \sim b \\ & \models f(p_1,p_2,p_3) \text{ was a pure strategy Nash equilibrium, it can never be the case that \\ &\min(p_1,p_2,p_3) > c \\ & \models \text{ We must have }\min\{p_1,p_2,p_3\} = c \end{split}$$
- Conclusa new mmrp1, p2, p3 = C
   Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to C? No since that firm would want to raise his price a bit and get strictly better profits
- There must be at least two firms that set price equal to marginal cost
- Set of all pure strategy Nash equilibria are given by:

 $\{(c, c, c + \varepsilon) : \varepsilon \ge 0\} \cup \{(c, c + \varepsilon, c) : \varepsilon \ge 0\} \cup \{(c + \varepsilon, c, c) : \varepsilon \ge 0\}.$ 

# Lecture 13: Game Theory // Nash equilibrium

- Examples Continued
- Hotelling and Voting Models

# Hotelling

- ▶ Two firms i = 1, 2 decide to produce heterogeneous products  $x_1, x_2 \in [0, 1]$

### Hotelling

- ▶ Two firms i = 1, 2 decide to produce heterogeneous products  $x_1, x_2 \in [0, 1]$
- x<sub>1</sub>, x<sub>2</sub> represents the characteristic of the product

### Hotelling

- ▶ Two firms i = 1, 2 decide to produce heterogeneous products  $x_1, x_2 \in [0, 1]$
- x<sub>1</sub>, x<sub>2</sub> represents the characteristic of the product
- $\blacktriangleright$  For example, this could be interpreted as a model in which there is a "linear city" represented by the interval [0,1]

### Hotelling

- ▶ Two firms i = 1, 2 decide to produce heterogeneous products  $x_1, x_2 \in [0, 1]$
- x1, x2 represents the characteristic of the product
- $\blacktriangleright$  For example, this could be interpreted as a model in which there is a "linear city" represented by the interval [0,1]
- ► In this interpretation, the firms are each deciding where to locate on this line

# Hotelling

- $\blacktriangleright~$  Two firms i=1,2 decide to produce heterogeneous products  ${\sf x}_1, {\sf x}_2 \in [0,1]$
- ▶  $x_1, x_2$  represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval [0, 1]
- In this interpretation, the firms are each deciding where to locate on this line
   Consumers are uniformly distributed on the line [0, 1], where θ ∈ [0, 1] represents the consumers ideal type of product that he would like to consume

( 0 ) ( *8* ) (

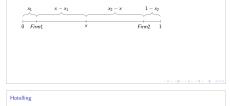
# Hotelling

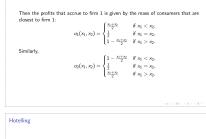
- ▶ Two firms i = 1, 2 decide to produce heterogeneous products  $x_1, x_2 \in [0, 1]$
- $\label{eq:response} \begin{array}{l} \blacktriangleright x_1, x_2 \mbox{ represents the characteristic of the product} \\ \hline \mbox{ For example, this could be interpreted as a model in which there is a "linear city" represented by the interval [0, 1] \\ \end{array}$
- represented by the interval [0, 1] In this interpretation, the firms are each deciding where to locate on this line
- ▶ Consumers are uniformly distributed on the line [0, 1], where  $\theta \in [0, 1]$  represents the consumers ideal type of product that he would like to consume
- ▶ If the firms i = 1, 2 respectively produce products of characteristic  $x_1$  and  $x_2$ , then a consumer at  $\theta$  would consume whichever product is closest to  $\theta$

# Hotelling

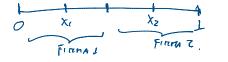
- ► Two firms i = 1, 2 decide to produce heterogeneous products x<sub>1</sub>, x<sub>2</sub> ∈ [0, 1]
   ► x<sub>1</sub>, x<sub>2</sub> represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval [0, 1]
- In this interpretation, the firms are each deciding where to locate on this line
- ▶ Consumers are uniformly distributed on the line [0,1], where  $\theta \in [0,1]$  represents the consumers ideal type of product that he would like to consume
- ▶ If the firms i = 1, 2 respectively produce products of characteristic  $x_1$  and  $x_2$ , then a consumer at  $\theta$  would consume whichever product is closest to  $\theta$
- ▶ The game consists of the two players i = 1, 2, each of whom chooses a point  $x_1, x_2 \in [0, 1]$  simultaneously.

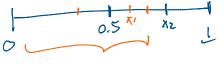
# Hotelling



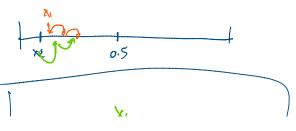


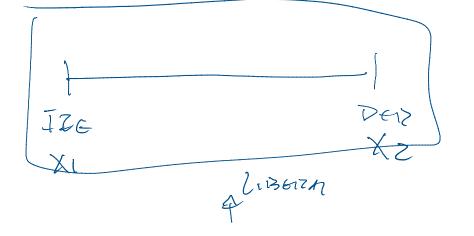


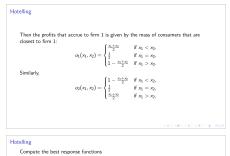












# Case 1: Suppose first that $x_2 > 1/2$ . Then setting $x_1$ against $x_2$ yields a payoff of $u_1(x_1,x_2) = \begin{cases} \frac{x_1+x_2}{2} & \text{if } x_1 < x_2, \\ \frac{1}{2} & \text{if } x_1 = x_2, \\ \frac{1}{2} & \frac{x_1+x_2}{2} & \text{if } x_1 > x_2. \end{cases}$ This utility function has a discontinuity at $x_1 = x_2$ and jumps down to 1/2 at $x_1 = x_2$ . There will be no best response for firm 1 (try to set as close to the left the other firm as possible).

Hotelling Compute the best response functions

▶ Case 1: Suppose first that  $x_2 > 1/2$ . Then setting  $x_1$  against  $x_2$  yields a payoff of  $u_1(x_1, x_2) = \begin{cases} \frac{x_1 \pm x_2}{2} & \text{if } x_1 = x_2, \\ 1 - \frac{x_1 \pm x_2}{2} & \text{if } x_1 = x_2. \end{cases}$ 

This utility function has a discontinuity at  $x_1 = x_2$  and jumps down to 1/2 at  $x_1 = x_2$ . There will be no best response for firm 1 (try to set as close to the left the other firm as possible)

Case 2: Suppose next that x<sub>2</sub> < 1/2. Again there will be no best response for firm 1 (try to set as close to the right the other firm as possible)</li>

### (D) (Ø) (2

Hotelling Compute the best response functions • Case 1: Suppose first that  $x_2 > 1/2$ . Then setting  $x_1$  against  $x_2$  yields a payoff of  $u_1(x_1, x_2) = \begin{cases} \frac{a_1 + x_2}{2} & \text{if } x_1 < x_2, \\ \frac{a_1 - x_2}{2}, & \text{if } x_1 = x_2, \\ \frac{1}{2} - \frac{a_1 + x_2}{2}, & \text{if } x_1 = x_2, \end{cases}$ This utility function has a discontinuity at  $x_1 = x_2$  and jumps down to 1/2 at  $x_1 = x_2$ . There will be no best response for firm 1 (try to set as close to the left the other firm as possible)

 $x_1 = x_2$ . There will be no best response for nmm 1 (by to set as close to the left the other firm as possible) **Case 2:** Suppose next that  $x_2 < 1/2$ . Again there will be no best response for firm 1 (by to set as close to the right the other firm as possible)

**Case** 3: Suppose next that  $x_2 = 1/2$ . Here there will be a best response for firm 1 at 1/2

# Hotelling

 $BR_1(x_2) = \begin{cases} \emptyset & \text{if } x_2 > 1/2 \\ 1/2 & \text{if } x_2 = 1/2 \\ \emptyset & \text{if } x_2 < 1/2. \end{cases}$  Symmetrically, we have: ( $\emptyset$  & if  $x_2 > 1/2$ 

 $BR_2(x_1) = \begin{cases} \emptyset & \text{if } x_1 > 1/2 \\ 1/2 & \text{if } x_1 = 1/2 \\ \emptyset & \text{if } x_1 < 1/2. \end{cases}$ The unique Nash equilibrium is for each firm to choose  $(x_1, x_2) = (1/2, 1/2).$  Each firm essentially locates in the same place

### Hotelling

- Hotelling can also be done in a discreet setting
- Hotelling can be applied to a variety of situations (e.g., voting)
- But this predicts the opposite of polarization
- With three candidates, predictions are quite different
- .
- $\blacktriangleright$  All candidates picking  $\frac{1}{2}$  is no longer a Nash equilibrium
- What are the set of pure strategy equilibria here? (this is a difficult problem).

