Lecture 3: General Equilibrium

Mauricio Romero

Lecture 3: General Equilibrium

Competitive equilibrium

Examples: Cobb-Douglas

Examples: Perfect Complements

Examples: Perfect Substitutes

Lecture 3: General Equilibrium

Competitive equilibrium

Examples: Cobb-Douglas

Examples: Perfect Complements

Examples: Perfect Substitutes

Hidden assumptions

- There is a market for each good
- Every agent can access the market without any cost
- There is a unique price for each good and all consumers know this price
- Each consumer can sell her initial endowment in the market and use the income to buy goods and services
- Consumers seek to maximize their utility given their budget restriction, independently of what everyone else is doing.
- There is no centralized mechanism
- People may not know others preferences or endowments
- There is perfect competition (i.e., everyone is a price taker)
- The only source of information agents are prices

Competitive equilibrium - Definition

Definition

A pair of an allocation and a price vector, $\left(x^{*}, p=\left(p_{1}, \ldots, p_{L}\right)\right)$ is called a competitive equilibrium if the following conditions hold:

1. For all consumers $i=1,2, \ldots, I, x^{i^{*}}=\left(x_{1}^{i^{*}}, \ldots, x_{L}^{i^{*}}\right)$ solves the following maximization problem:

$$
\begin{gathered}
\max _{x^{i}} u_{i}\left(x^{i}\right) \\
\text { such that } p \cdot x^{i} \leq p \cdot \omega^{i}=\sum_{\ell=1}^{L} p_{\ell} \omega_{\ell}^{i}
\end{gathered}
$$

2. Markets clear: For each commodity $\ell=1,2, \ldots, L$, the following equation holds:

$$
\sum_{i=1}^{l} x_{\ell}^{i^{*}}=\sum_{i=1}^{l} \omega_{\ell}^{i}
$$

Competitive equilibrium - Properties

Remark

Suppose that at least one consumer has strictly monotone preferences. Then if $\left(x^{*}, p\right)$ is a competitive equilibrium, $p_{1}, p_{2}, \ldots, p_{L}>0$.

Remark
Suppose that at least one consumer has weakly monotone preferences. Then if $\left(x^{*}, p\right)$ is a competitive equilibrium, there for at least one $\ell, p_{\ell}>0$.

Remark
If $\left(x^{*}, p\right)$ is a competitive equilibrium, then $\left(x^{*}, c p\right)$ for $c \in \mathbb{R}_{+}+$is also a competitive equilibrium.

Competitive equilibrium - Walras' Law

Theorem (Walras' Law)
Suppose that consumer i has weakly monotone preferences and that $\hat{x}^{i} \in x^{i^{*}}(p)$. Then

$$
p \cdot \hat{x}^{i}=\sum_{\ell=1}^{L} p_{\ell} \hat{x}_{\ell}^{i}=\sum_{\ell=1}^{L} p_{\ell} \omega_{\ell}^{i}=p \cdot \omega^{i}
$$

Theorem (Walras' Law - II)
Suppose that utility functions are weakly monotonic. Suppose that $p=\left(p_{1}, \ldots, p_{L}\right)$ is such that $p_{L}>0$. Take any $\left(x^{*}, p\right)$ in which Condition 1 holds for each consumer $i=1,2, \ldots, l$ and markets clear for all commodities $\ell=1,2, \ldots, L-1$. Then the market clearing condition will hold for commodity L as well.

Walras' Law - proof

- For each consumer i, we must

$$
\sum_{\ell=1}^{L} p_{\ell} x_{\ell}^{i *}=\sum_{\ell=1}^{L} p_{\ell} \omega_{\ell}^{i}
$$

Walras' Law - proof

- For each consumer i, we must

$$
\sum_{\ell=1}^{L} p_{\ell} x_{\ell}^{i *}=\sum_{\ell=1}^{L} p_{\ell} \omega_{\ell}^{i}
$$

- If we sum the above across all I consumers, then we get:

$$
\sum_{i=1}^{I} \sum_{\ell=1}^{L} p_{\ell} x_{\ell}^{i^{*}}=\sum_{i=1}^{I} \sum_{\ell=1}^{L} p_{\ell} \omega_{\ell}^{i}
$$

Walras' Law - proof

- For each consumer i, we must

$$
\sum_{\ell=1}^{L} p_{\ell} x_{\ell}^{i^{*}}=\sum_{\ell=1}^{L} p_{\ell} \omega_{\ell}^{i}
$$

- If we sum the above across all I consumers, then we get:

$$
\sum_{i=1}^{I} \sum_{\ell=1}^{L} p_{\ell} x_{\ell}^{i *}=\sum_{i=1}^{I} \sum_{\ell=1}^{L} p_{\ell} \omega_{\ell}^{i}
$$

- Re-arranging:

$$
\sum_{\ell=1}^{L} \sum_{i=1}^{I} p_{\ell} x_{\ell}^{i^{*}}=\sum_{\ell=1}^{L} \sum_{i=1}^{I} p_{\ell} \omega_{\ell}^{i}
$$

Walras' Law - proof

- For each consumer i, we must

$$
\sum_{\ell=1}^{L} p_{\ell} x_{\ell}^{i^{*}}=\sum_{\ell=1}^{L} p_{\ell} \omega_{\ell}^{i}
$$

- If we sum the above across all I consumers, then we get:

$$
\sum_{i=1}^{I} \sum_{\ell=1}^{L} p_{\ell} x_{\ell}^{i *}=\sum_{i=1}^{I} \sum_{\ell=1}^{L} p_{\ell} \omega_{\ell}^{i}
$$

- Re-arranging:

$$
\sum_{\ell=1}^{L} \sum_{i=1}^{I} p_{\ell} x_{\ell}^{i^{*}}=\sum_{\ell=1}^{L} \sum_{i=1}^{I} p_{\ell} \omega_{\ell}^{i}
$$

- Re-arranging:

$$
\sum_{\ell=1}^{L} p_{\ell} \sum_{i=1}^{I}\left(x_{\ell}^{i^{*}}-\omega_{\ell}^{i}\right)=0
$$

Walras' Law - proof

$$
\sum_{\ell=1}^{L} p_{\ell} \sum_{i=1}^{I}\left(x_{\ell}^{i^{*}}-\omega_{\ell}^{i}\right)=0
$$

Walras' Law - proof

$$
\begin{aligned}
& \sum_{\ell=1}^{L} p_{\ell} \sum_{i=1}^{I}\left(x_{\ell}^{i^{*}}-\omega_{\ell}^{i}\right)=0 \\
& p_{L} \sum_{i=1}^{I}\left(x_{L}^{i^{*}}-\omega_{L}^{i}\right)=0
\end{aligned}
$$

Walras' Law - proof

$$
\sum_{\ell=1}^{L} p_{\ell} \sum_{i=1}^{I}\left(x_{\ell}^{i^{*}}-\omega_{\ell}^{i}\right)=0
$$

$$
p_{L} \sum_{i=1}^{l}\left(x_{L}^{i^{*}}-\omega_{L}^{i}\right)=0
$$

$$
\sum_{i=1}^{I}\left(x_{L}^{i *}-\omega_{L}^{i}\right)=0
$$

Lecture 3: General Equilibrium

Competitive equilibrium

Examples: Cobb-Douglas

Examples: Perfect Complements

Examples: Perfect Substitutes

Lecture 3: General Equilibrium

Competitive equilibrium

Examples: Cobb-Douglas

Examples: Perfect Complements

Examples: Perfect Substitutes

Cobb-Douglas

$$
\begin{aligned}
& u_{A}(x, y)=x^{\alpha} y^{1-\alpha} \\
& u_{B}(x, y)=x^{\beta} y^{1-\beta}
\end{aligned}
$$

Suppose

$$
\begin{array}{r}
\alpha=0.5 \\
\beta=0.5 \\
\omega^{A}=(1.5,0.5) \\
\omega^{B}=(0.5,1.5)
\end{array}
$$

Cobb-Douglas

Each individual solves

$$
\max _{x_{i}, y_{i}} \sqrt{x^{i} y^{i}}
$$

s.t.

$$
p_{x} x^{i}+p_{y} y^{i} \leq p_{x} w_{x}^{i}+p_{y} w_{y}^{i}
$$

Cobb-Douglas

Each individual solves

$$
\max _{x_{i}, y_{i}} \sqrt{x^{i} y^{i}}
$$

s.t.

$$
p_{x} x^{i}+p_{y} y^{i} \leq p_{x} w_{x}^{i}+p_{y} w_{y}^{i}
$$

We can set up a Lagrangean:

$$
\mathcal{L}=\sqrt{x^{i} y^{i}}+\lambda\left(p_{x} w_{x}^{i}+p_{y} w_{y}^{i}-p_{x} x^{i}-p_{y} y^{i}\right)
$$

Cobb-Douglas

Each individual solves

$$
\max _{x_{i}, y_{i}} \sqrt{x^{i} y^{i}}
$$

s.t.

$$
p_{x} x^{i}+p_{y} y^{i} \leq p_{x} w_{x}^{i}+p_{y} w_{y}^{i}
$$

We can set up a Lagrangean:

$$
\mathcal{L}=\sqrt{x^{i} y^{i}}+\lambda\left(p_{x} w_{x}^{i}+p_{y} w_{y}^{i}-p_{x} x^{i}-p_{y} y^{i}\right)
$$

The FOC are:

$$
\begin{aligned}
& \frac{1}{2} \sqrt{\frac{y^{i}}{x^{i}}}=\lambda p_{x} \\
& \frac{1}{2} \sqrt{\frac{x^{i}}{y^{i}}}=\lambda p_{y}
\end{aligned}
$$

Cobb-Douglas

Thus,

$$
\begin{aligned}
\frac{y^{i}}{x^{i}} & =\frac{p_{x}}{p_{y}} \\
y^{i} & =x^{i} \frac{p_{x}}{p_{y}}
\end{aligned}
$$

Cobb-Douglas

Thus,

$$
\begin{aligned}
& \frac{y^{i}}{x^{i}}=\frac{p_{x}}{p_{y}} \\
& y^{i}=x^{i} \frac{p_{x}}{p_{y}}
\end{aligned}
$$

We haven't used the budget restriction!

Cobb-Douglas

Thus,

$$
\begin{aligned}
& \frac{y^{i}}{x^{i}}=\frac{p_{x}}{p_{y}} \\
& y^{i}=x^{i} \frac{p_{x}}{p_{y}}
\end{aligned}
$$

We haven't used the budget restriction!

$$
\begin{gathered}
p_{x} x^{i}+p_{y} y^{i}=p_{x} w_{x}^{i}+p_{y} w_{y}^{i} \\
p_{x} x^{i}+p_{y} x^{i} \frac{p_{x}}{p_{y}}=p_{x} w_{x}^{i}+p_{y} w_{y}^{i} \\
x^{i}=\frac{w_{x}^{i} p_{x}+w_{y}^{i} p_{y}}{2 p_{x}} \\
y^{i}=\frac{w_{x}^{i} p_{x}+w_{y}^{i} p_{y}}{2 p_{y}}
\end{gathered}
$$

Cobb-Douglas

$$
\begin{aligned}
x^{A} & =\frac{1.5 p_{x}+0.5 p_{y}}{2 p_{x}} \\
y^{A} & =\frac{1.5 p_{x}+0.5 p_{y}}{2 p_{y}} \\
x^{B} & =\frac{0.5 p_{x}+1.5 p_{y}}{2 p_{x}} \\
y^{B} & =\frac{0.5 p_{x}+1.5 p_{y}}{2 p_{y}}
\end{aligned}
$$

Now we can use condition 2 (market clear)

Cobb-Douglas

$$
\begin{aligned}
x^{A} & =\frac{1.5 p_{x}+0.5 p_{y}}{2 p_{x}} \\
y^{A} & =\frac{1.5 p_{x}+0.5 p_{y}}{2 p_{y}} \\
x^{B} & =\frac{0.5 p_{x}+1.5 p_{y}}{2 p_{x}} \\
y^{B} & =\frac{0.5 p_{x}+1.5 p_{y}}{2 p_{y}}
\end{aligned}
$$

Now we can use condition 2 (market clear)

$$
\begin{aligned}
& x^{A}+x^{B}=2 \\
& y^{A}+y^{B}=2
\end{aligned}
$$

Cobb-Douglas

$$
\begin{gathered}
\frac{1.5 p_{x}+0.5 p_{y}}{2 p_{x}}+\frac{0.5 p_{x}+1.5 p_{y}}{2 p_{x}}=2 \\
\frac{p_{x}}{p_{y}}=1
\end{gathered}
$$

Cobb-Douglas

$$
\begin{gathered}
\frac{1.5 p_{x}+0.5 p_{y}}{2 p_{x}}+\frac{0.5 p_{x}+1.5 p_{y}}{2 p_{x}}=2 \\
\frac{p_{x}}{p_{y}}=1 \\
x^{A}=x^{B}=y^{A}=y^{B}=1
\end{gathered}
$$

Cobb-Douglas

Lecture 3: General Equilibrium

Competitive equilibrium

Examples: Cobb-Douglas

Examples: Perfect Complements

Examples: Perfect Substitutes

Lecture 3: General Equilibrium

Competitive equilibrium

Examples: Cobb-Douglas

Examples: Perfect Complements

Examples: Perfect Substitutes

Perfect complements

Suppose that

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=\min \left(x^{A}, 2 y^{A}\right) \\
u_{B}\left(x^{B}, y^{B}\right)=\min \left(2 x^{B}, y^{B}\right) \\
\omega^{A}=(3,1) \\
\omega^{B}=(1,3)
\end{array}
$$

Perfect complements

At a given price vector, consumer A can buy any combination $\left(x^{A}, y^{A}\right)$ such that:

$$
p_{x} w_{x}^{A}+p_{y} w_{y}^{A} \geq p_{x} x^{A}+p_{y} y^{A}
$$

Perfect complements

At a given price vector, consumer A can buy any combination (x^{A}, y^{A}) such that:

$$
p_{x} w_{x}^{A}+p_{y} w_{y}^{A} \geq p_{x} x^{A}+p_{y} y^{A}
$$

or equivalently

$$
y^{A} \leq \frac{p_{x} w_{x}^{A}+p_{y} w_{y}^{A}}{p_{y}}-\frac{p_{x}}{p_{y}} x^{A}
$$

Perfect complements

At a given price vector, consumer A can buy any combination $\left(x^{A}, y^{A}\right)$ such that:

$$
p_{x} w_{x}^{A}+p_{y} w_{y}^{A} \geq p_{x} x^{A}+p_{y} y^{A}
$$

or equivalently

$$
y^{A} \leq \frac{p_{x} w_{x}^{A}+p_{y} w_{y}^{A}}{p_{y}}-\frac{p_{x}}{p_{y}} x^{A}
$$

How does this looks in the Edgeworth box?

If $\frac{p_{x}}{p_{y}} \neq 1$ Then, we will have the following restriction:

$$
y^{A} \leq \frac{p_{x}}{p_{y}}\left(w_{x}^{A}-x^{A}\right)+w_{y}^{A}
$$

If $\frac{p_{x}}{p_{y}} \neq 1$ Then, we will have the following restriction:

$$
y^{A} \leq \frac{p_{x}}{p_{y}}\left(w_{x}^{A}-x^{A}\right)+w_{y}^{A}
$$

Thus, replacing the values of w_{x}^{A} and w_{y}^{A}, we have:

$$
y^{A} \leq \frac{p_{x}}{p_{y}}\left(3-x^{A}\right)+1
$$

If $\frac{p_{x}}{p_{y}} \neq 1$ Then, we will have the following restriction:

$$
y^{A} \leq \frac{p_{x}}{p_{y}}\left(w_{x}^{A}-x^{A}\right)+w_{y}^{A}
$$

Thus, replacing the values of w_{x}^{A} and w_{y}^{A}, we have:

$$
y^{A} \leq \frac{p_{x}}{p_{y}}\left(3-x^{A}\right)+1
$$

Note that, for the case $\frac{p_{x}}{p_{y}}=1$, we have the following restriction:

$$
y^{A} \leq 4-x^{A}
$$

$\frac{p_{x}}{p_{y}}<1$

$\frac{p_{x}}{p_{y}}<1$

A can buy whats below the orange line, B what is above
$\frac{p_{x}}{p_{y}}<1$

Excess demand of Y and excess supply of X

$$
\frac{p_{x}}{p_{y}}>1
$$

$$
\frac{p_{x}}{p_{y}}>1
$$

$\frac{p_{x}}{p_{y}}>1$

$$
\frac{p_{x}}{p_{y}}=1
$$

No excess demand or supply

What about zero prices?
$p_{x}=0$

Excess supply of X ? (and Y balanced?)
$p_{x}=0$

Excess supply of X ? (and Y balanced?) Not really since both A and B are indifferent over a wide range that would make the market clear
$p_{y}=0$

Excess supply of Y ? (and X balanced?)

$$
p_{y}=0
$$

Excess supply of Y ? (and X balanced?) Not really since both A and B are indifferent over a wide range that would make the market clear

To sum up...

- There are multiple equilibria
- There are three price vectors associated with these equilibria
- One price vector has a unique resource allocation associated with it
- Two price vectors ($p_{x}=0$ and $p_{y}=0$) have infinity resource allocations associated with them

Perfect complements

Try at home:

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=\min \left(x^{A}, y^{A}\right) \\
u_{B}\left(x^{B}, y^{B}\right)=\min \left(x^{B}, y^{B}\right) \\
\omega^{A}=(1,1) \\
\omega^{B}=(3,1)
\end{array}
$$

Lecture 3: General Equilibrium

Competitive equilibrium

Examples: Cobb-Douglas

Examples: Perfect Complements

Examples: Perfect Substitutes

Lecture 3: General Equilibrium

Competitive equilibrium

Examples: Cobb-Douglas

Examples: Perfect Complements

Examples: Perfect Substitutes

Perfect Substitutes

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=2 x^{A}+y^{A} \\
u_{B}\left(x^{B}, y^{B}\right)=x^{B}+y^{B} \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

Perfect Substitutes

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=2 x^{A}+y^{A} \\
u_{B}\left(x^{B}, y^{B}\right)=x^{B}+y^{B} \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

$p_{x}>0$ and $p_{y}>0$, why?

[^0]
Perfect Substitutes

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=2 x^{A}+y^{A} \\
u_{B}\left(x^{B}, y^{B}\right)=x^{B}+y^{B} \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

$p_{x}>0$ and $p_{y}>0$, why? hence, normalize $p_{x}=1$

Perfect Substitutes

Peferences of person A:

Perfect Substitutes

Peferences of person B :

Perfect Substitutes

Algebraic solution

$$
\max _{x^{A}, y^{A}} 2 x^{A}+y^{A}
$$

subject to:

$$
\begin{array}{r}
I=x^{A}+p_{y} y^{A} \\
y^{A} \geq 0 \\
x^{A} \geq 0
\end{array}
$$

Perfect Substitutes

Algebraic solution

$$
\max _{x^{A}, y^{A}} 2 x^{A}+y^{A}
$$

subject to：

$$
\begin{array}{r}
I=x^{A}+p_{y} y^{A} \\
y^{A} \geq 0 \\
x^{A} \geq 0
\end{array}
$$

From the budget constraint we can obtain $y^{A}=\frac{1-x^{A}}{p_{y}}$ ，and adding the condition $y^{A} \geq 0$ ，we can conclude that $x^{A} \in[0, I]$ ．

Perfect Substitutes

Introducing y^{A} into the original maximization problem:

$$
\max \left(2-\frac{1}{p_{y}}\right) x^{A}+\frac{I}{p_{y}} \quad \text { s.t. } x^{A} \in[0, I]
$$

Which is a maximization of a straight line with slope $\left(2-\frac{1}{p_{y}}\right)$ over an interval.

Perfect Substitutes

The demand for goods of individual A is

$$
\begin{gathered}
X^{A}= \begin{cases}0 & \text { if } p_{y}<0.5 \\
{[0, I]} & \text { if } p_{y}=0.5 \\
I & \text { if } p_{y}>0.5\end{cases} \\
Y^{A}= \begin{cases}\frac{1}{p_{y}} & \text { if } p_{y}<0.5 \\
{\left[0, \frac{1}{p_{y}}\right]} & \text { if } p_{y}=0.5 \\
0 & \text { if } p_{y}>0.5\end{cases}
\end{gathered}
$$

Perfect Substitutes

The demand for x^{A} is represented below：

Perfect Substitutes

The demand for y^{A} is represented below:

Perfect Substitutes

Algebraic solution

For person B the solution is analogous，but we have the following maximization problem：Introducing y^{A} into the original maximization problem：

$$
\max \left(1-\frac{1}{p_{y}}\right) x^{B}+\frac{l}{p_{y}} \quad \text { s.t. } x^{B} \in[0, I]
$$

Which is a maximization of a straight line with slope $\left(1-\frac{1}{p_{y}}\right)$ over an interval．

Perfect Substitutes

The demand for goods of individual B is

$$
\begin{aligned}
& X^{B}= \begin{cases}0 & \text { if } p_{y}<1 \\
{[0, l]} & \text { if } p_{y}=1 \\
l & \text { if } p_{y}>1\end{cases} \\
& Y^{B}= \begin{cases}\frac{1}{p_{y}} & \text { if } p_{y}<1 \\
{\left[0, \frac{1}{p_{y}}\right]} & \text { if } p_{y}=1 \\
0 & \text { if } p_{y}>1\end{cases}
\end{aligned}
$$

Perfect Substitutes

The demand for x^{B} is represented below:

Perfect Substitutes

The demand for y^{B} is represented below：

Perfect Substitutes

When is the market for good X balanced (how about good y ?)

Perfect Substitutes

When is the market for good X balanced (how about good y ?)

- Try $p_{y}<0.5$

Perfect Substitutes

When is the market for good X balanced (how about good y ?)

- Try $p_{y}<0.5$
- $X^{A}=0$ and $X^{B}=0$

Perfect Substitutes

When is the market for good X balanced (how about good y ?)

- Try $p_{y}<0.5$
- $X^{A}=0$ and $X^{B}=0$
- Try $p_{y}=0.5$

Perfect Substitutes

When is the market for good X balanced（how about good y ？）
－Try $p_{y}<0.5$
－$X^{A}=0$ and $X^{B}=0$
－Try $p_{y}=0.5$
－$X^{A}=[0, I]$ and $X^{B}=0$

Perfect Substitutes

When is the market for good X balanced（how about good y ？）
－Try $p_{y}<0.5$
－$X^{A}=0$ and $X^{B}=0$
－Try $p_{y}=0.5$
－$X^{A}=[0, I]$ and $X^{B}=0$
－Can＇t be an equilibrium since $I=1.5$ when $p_{y}=0.5$ ，thus $X^{A}+X^{B}<2$
－Try $0.5<p_{y}<1$

Perfect Substitutes

When is the market for good X balanced（how about good y ？）
－Try $p_{y}<0.5$
－$X^{A}=0$ and $X^{B}=0$
－Try $p_{y}=0.5$
－$X^{A}=[0, I]$ and $X^{B}=0$
－Can＇t be an equilibrium since $I=1.5$ when $p_{y}=0.5$ ，thus $X^{A}+X^{B}<2$
－Try $0.5<p_{y}<1$
－$X^{A}=I$ and $X^{B}=0$

Perfect Substitutes

When is the market for good X balanced（how about good y ？）
－Try $p_{y}<0.5$
－$X^{A}=0$ and $X^{B}=0$
－Try $p_{y}=0.5$
－$X^{A}=[0, I]$ and $X^{B}=0$
－Can＇t be an equilibrium since $I=1.5$ when $p_{y}=0.5$ ，thus $X^{A}+X^{B}<2$
－Try $0.5<p_{y}<1$
－$X^{A}=I$ and $X^{B}=0$
－Can＇t be an equilibrium since $I=1+p_{y}$ ，thus $X^{A}+X^{B}<2$
－Try $p_{y}=1$

Perfect Substitutes

When is the market for good X balanced（how about good y ？）
－Try $p_{y}<0.5$
－$X^{A}=0$ and $X^{B}=0$
－Try $p_{y}=0.5$
－$X^{A}=[0, I]$ and $X^{B}=0$
－Can＇t be an equilibrium since $I=1.5$ when $p_{y}=0.5$ ，thus $X^{A}+X^{B}<2$
－Try $0.5<p_{y}<1$
－$X^{A}=I$ and $X^{B}=0$
－Can＇t be an equilibrium since $I=1+p_{y}$ ，thus $X^{A}+X^{B}<2$
－Try $p_{y}=1$
－$X^{A}=I=2$ and $X^{B}=[0,2]$

Perfect Substitutes

When is the market for good X balanced (how about good y ?)

- Try $p_{y}<0.5$
- $X^{A}=0$ and $X^{B}=0$
- Try $p_{y}=0.5$
- $X^{A}=[0, I]$ and $X^{B}=0$
- Can't be an equilibrium since $I=1.5$ when $p_{y}=0.5$, thus $X^{A}+X^{B}<2$
- Try $0.5<p_{y}<1$
- $X^{A}=I$ and $X^{B}=0$
- Can't be an equilibrium since $I=1+p_{y}$, thus $X^{A}+X^{B}<2$
- Try $p_{y}=1$
- $X^{A}=I=2$ and $X^{B}=[0,2]$
- One possible equilibrium ($\left.X^{A}=2, X^{B}=0, Y^{A}=0, Y^{B}=2\right)$

Perfect Substitutes

When is the market for good X balanced (how about good y ?)

- Try $p_{y}<0.5$
- $X^{A}=0$ and $X^{B}=0$
- Try $p_{y}=0.5$
- $X^{A}=[0, I]$ and $X^{B}=0$
- Can't be an equilibrium since $I=1.5$ when $p_{y}=0.5$, thus $X^{A}+X^{B}<2$
- Try $0.5<p_{y}<1$
- $X^{A}=I$ and $X^{B}=0$
- Can't be an equilibrium since $I=1+p_{y}$, thus $X^{A}+X^{B}<2$
- Try $p_{y}=1$
- $X^{A}=I=2$ and $X^{B}=[0,2]$
- One possible equilibrium $\left(X^{A}=2, X^{B}=0, Y^{A}=0, Y^{B}=2\right)$
- Try $p_{y}>1$

Perfect Substitutes

When is the market for good X balanced (how about good y ?)

- Try $p_{y}<0.5$
- $X^{A}=0$ and $X^{B}=0$
- Try $p_{y}=0.5$
- $X^{A}=[0, I]$ and $X^{B}=0$
- Can't be an equilibrium since $I=1.5$ when $p_{y}=0.5$, thus $X^{A}+X^{B}<2$
- Try $0.5<p_{y}<1$
- $X^{A}=I$ and $X^{B}=0$
- Can't be an equilibrium since $I=1+p_{y}$, thus $X^{A}+X^{B}<2$
- Try $p_{y}=1$
- $X^{A}=I=2$ and $X^{B}=[0,2]$
- One possible equilibrium ($X^{A}=2, X^{B}=0, Y^{A}=0, Y^{B}=2$)
- Try $p_{y}>1$
- $X^{A}=I$ and $X^{B}=I$

Perfect Substitutes

When is the market for good X balanced (how about good y ?)

- Try $p_{y}<0.5$
- $X^{A}=0$ and $X^{B}=0$
- Try $p_{y}=0.5$
- $X^{A}=[0, I]$ and $X^{B}=0$
- Can't be an equilibrium since $I=1.5$ when $p_{y}=0.5$, thus $X^{A}+X^{B}<2$
- Try $0.5<p_{y}<1$
- $X^{A}=I$ and $X^{B}=0$
- Can't be an equilibrium since $I=1+p_{y}$, thus $X^{A}+X^{B}<2$
- Try $p_{y}=1$
- $X^{A}=I=2$ and $X^{B}=[0,2]$
- One possible equilibrium ($X^{A}=2, X^{B}=0, Y^{A}=0, Y^{B}=2$)
- Try $p_{y}>1$
- $X^{A}=I$ and $X^{B}=I$
- $X^{A}=I=1+p_{y}$ and $X^{B}=I=1+p_{y}$
- Can't be an equilibrium since $I=1+p_{y}$, thus $X^{A}+X^{B}=2+2 p_{y}>2$

[^0]:

