# Lecture 4: General Equilibrium 

Mauricio Romero

## Lecture 4: General Equilibrium

Is there always an equilibrium?

Is the equilibrium unique?

First welfare theorem

Second welfare theorem

## Lecture 4: General Equilibrium

Is there always an equilibrium?

## Is the equilibrium unique?

## First welfare theorem

## Second welfare theorem

- The answer is going to be yes in general
- We will show that the equilibrium is a "fix point" of a certain function
- Intuitively, if we have a function that adjusts prices (higher price is demand $>$ supply), then the equilibrium is where this function stops updating


## Lecture 4: General Equilibrium

Is there always an equilibrium?
An intro to fix point theorems The walrasian auctioneer

Is the equilibrium unique?

First welfare theorem

Second welfare theorem

Try to draw a line from $A$ to $B$ without crossing the diagonal


Try to draw a line from $A$ to $B$ without crossing the diagonal


Its impossible!

For example...


There is even a theorem for this:
Theorem
For any function $f:[0,1] \rightarrow[0,1]$ that is continuous, there exists an $x^{*} \in[0,1]$ such that $f\left(x^{*}\right)=x^{*}$

And a more general version!
Theorem
For any function $f: \triangle^{L-1} \rightarrow \triangle^{L-1}$ that is continuous, there exists a point $p^{*}=\left(p_{1}^{*}, p_{2}^{*}, \ldots, p_{L}^{*}\right)$ such that

$$
f\left(p^{*}\right)=p^{*}
$$

where

$$
\Delta^{L-1}=\left\{\left(p_{1}, p_{2}, \ldots, p_{L}\right) \in \mathbb{R}_{+}^{L} \mid \sum_{l=1}^{L} p_{l}=1\right\}
$$

## What was the goal again?

- Prove the existence of a general equilibrium in a market
- We will show that the equilibrium is a "fix point" of a certain function
- Intuitively, if we have a function that adjusts prices (higher price if demand $>$ supply), then the equilibrium is where this function stops updating


## Lecture 4: General Equilibrium

Is there always an equilibrium?
An intro to fix point theorems
The walrasian auctioneer

Is the equilibrium unique?

First welfare theorem

Second welfare theorem

## Excess demand

Let us define the excess demand by:

$$
Z(p)=\left(Z_{1}(p), Z_{2}(p), \ldots, Z_{L}(p)\right)=\sum_{i=1}^{1} x^{* i}(p)-\sum_{i=1}^{1} w^{i}
$$

## Excess demand

Let us define the excess demand by:

$$
Z(p)=\left(Z_{1}(p), Z_{2}(p), \ldots, Z_{L}(p)\right)=\sum_{i=1}^{1} x^{* i}(p)-\sum_{i=1}^{1} w^{i}
$$

since $x^{* i}(p)$ is the demand (i.e., consumers are already maximizing) then we have the following result:

## Remark

$p \in \mathbb{R}_{++}^{L}$ is a competitive equilibrium if and only if $Z(p)=0$

## Excess demand

$Z(p)$ has the following properties

1. Is continuous in $p$
2. Is homogeneous of degree zero
3. $p \cdot Z(p)=0$ (this is equivalent to Walra's law)

## Excess demand

$Z(p)$ has the following properties

1. Is continuous in $p$
2. Is homogeneous of degree zero
3. $p \cdot Z(p)=0$ (this is equivalent to Walra's law) - Think about this!

## Excess demand

We said we want to update prices in a "logical" way. If excess demand is positive, then increase prices...

## Excess demand

We said we want to update prices in a "logical" way. If excess demand is positive, then increase prices...

$$
p^{\prime}=p+Z(p)
$$

But what if $p^{\prime}<0$ ? Ok then

$$
\begin{aligned}
& T(p)=\frac{1}{\sum_{i=1}^{L} p_{l}+\max \left(0, Z_{l}(p)\right)}\left(p_{1}+\max \left(0, Z_{1}(p)\right)\right. \\
& p_{2}+\max \left(0, Z_{2}(p)\right), \ldots \\
& \left.\quad p_{L}+\max \left(0, Z_{L}(p)\right)\right)
\end{aligned}
$$

## Excess demand

- T is continuous
- Thus we can apply the fix point theorem
- Therefore there exists a $p^{*}$ such that $T\left(p^{*}\right)=p^{*}$
- Then $Z\left(p^{*}\right)=0$


## Excess demand

- T is continuous
- Thus we can apply the fix point theorem
- Therefore there exists a $p^{*}$ such that $T\left(p^{*}\right)=p^{*}$
- Then $Z\left(p^{*}\right)=0$ (why?)


## So when does it break down?

- We needed demand to be continuous!

Weird case - no equilibrium

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=\min \left(x^{A}, y^{A}\right) \\
u_{B}\left(x^{B}, y^{B}\right)=\max \left(x^{B}, y^{B}\right) \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

Weird case - no equilibrium

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=\min \left(x^{A}, y^{A}\right) \\
u_{B}\left(x^{B}, y^{B}\right)=\max \left(x^{B}, y^{B}\right) \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

- prices are positive (why?)

Weird case - no equilibrium

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=\min \left(x^{A}, y^{A}\right) \\
u_{B}\left(x^{B}, y^{B}\right)=\max \left(x^{B}, y^{B}\right) \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

- prices are positive (why?)
- normalize $p_{x}=1$

Weird case - no equilibrium

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=\min \left(x^{A}, y^{A}\right) \\
u_{B}\left(x^{B}, y^{B}\right)=\max \left(x^{B}, y^{B}\right) \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

- prices are positive (why?)
- normalize $p_{x}=1$
- if $p_{y}<1$ then $B$ wants to demand as much of $y$ as possible $Y^{b}=\frac{1}{p_{y}}+1$


## Weird case - no equilibrium

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=\min \left(x^{A}, y^{A}\right) \\
u_{B}\left(x^{B}, y^{B}\right)=\max \left(x^{B}, y^{B}\right) \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

- prices are positive (why?)
- normalize $p_{x}=1$
- if $p_{y}<1$ then $B$ wants to demand as much of $y$ as possible $Y^{b}=\frac{1}{p_{y}}+1$
- if $p_{y}>1$ then $B$ wants to demand as much of $x$ as possible $X^{b}=p_{y}+1$


## Weird case - no equilibrium

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=\min \left(x^{A}, y^{A}\right) \\
u_{B}\left(x^{B}, y^{B}\right)=\max \left(x^{B}, y^{B}\right) \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

- prices are positive (why?)
- normalize $p_{x}=1$
- if $p_{y}<1$ then $B$ wants to demand as much of $y$ as possible $Y^{b}=\frac{1}{p_{y}}+1$
- if $p_{y}>1$ then $B$ wants to demand as much of $x$ as possible $X^{b}=p_{y}+1$
- if $p_{y}=1$ then $B$ either demands two units of $X$ or two units of $Y$, but $A$ demands at least one unit of each good


## Lecture 4: General Equilibrium

Is there always an equilibrium?

Is the equilibrium unique?

First welfare theorem

Second welfare theorem

## Lecture 4: General Equilibrium

Is there always an equilibrium?

Is the equilibrium unique?

## First welfare theorem

## Second welfare theorem

Is the equilibrium unique?

We have seen it is not

## Lecture 4: General Equilibrium

Is there always an equilibrium?

Is the equilibrium unique?

First welfare theorem

Second welfare theorem

## Lecture 4: General Equilibrium

Is there always an equilibrium?

## Is the equilibrium unique?

First welfare theorem

## Second welfare theorem

## First welfare theorem

Theorem
Consider any pure exchange economy. Suppose that all consumers have weakly monotone utility functions. Then if $\left(x^{*}, p\right)$ is a competitive equilibrium, then $x^{*}$ is a Pareto efficient allocation.

By contradiction:

## Proof

By contradiction:
Assume that $\left(p,\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)\right)$ is a competitive equilibrium but that $\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)$ is not Pareto efficient

## Proof

By contradiction:
Assume that $\left(p,\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)\right)$ is a competitive equilibrium but that $\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)$ is not Pareto efficient
Then there is an allocation $\left(\widehat{x}^{1}, \widehat{x}^{2}, \ldots, \widehat{x}^{\prime}\right)$ such that

- is feasible
- pareto dominates $\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)$


## Proof

By contradiction:
Assume that $\left(p,\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)\right)$ is a competitive equilibrium but that $\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)$ is not Pareto efficient
Then there is an allocation $\left(\widehat{x}^{1}, \widehat{x}^{2}, \ldots, \widehat{x}^{\prime}\right)$ such that

- is feasible
- pareto dominates $\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)$ In other words:

1. $\sum_{i=1}^{l} \widehat{x}^{i}=\sum_{i=1}^{l} w^{i}$
2. For all $i, u^{i}\left(\widehat{x}^{i}\right) \geqslant u^{i}\left(x^{i}\right)$
3. For some $i^{*}, u^{i^{*}}\left(\widehat{x}^{i^{*}}\right)>u^{i^{*}}\left(x^{i^{*}}\right)$

## Proof

By definition of an equilibrium we have that

- Condition 3 in the previous slide implies $p \cdot \widehat{x}^{i^{*}}>p \cdot w^{i^{*}}$


## Proof

By definition of an equilibrium we have that

- Condition 3 in the previous slide implies $p \cdot \widehat{x}^{i^{*}}>p \cdot w^{i^{*}}$
- Otherwise, why didn't $i^{*}$ pick $\widehat{x}^{i^{*}}$ to begin with
- Condition 2 in the previous slide implies that for all $i$, $p \cdot \widehat{x}^{i} \geqslant p \cdot w^{i}$


## Proof

By definition of an equilibrium we have that

- Condition 3 in the previous slide implies $p \cdot \widehat{x}^{i^{*}}>p \cdot w^{i^{*}}$
- Otherwise, why didn't $i^{*}$ pick $\widehat{x}^{i^{*}}$ to begin with
- Condition 2 in the previous slide implies that for all $i$, $p \cdot \widehat{x}^{i} \geqslant p \cdot w^{i}$
Adding over all agents we get:

$$
\sum_{i=1}^{l} p \cdot \widehat{x}^{i}>\sum_{i=1}^{l} p \cdot w^{i}
$$

## Proof

By definition of an equilibrium we have that

- Condition 3 in the previous slide implies $p \cdot \widehat{x}^{i^{*}}>p \cdot w^{i^{*}}$
- Otherwise, why didn't $i^{*}$ pick $\widehat{x}^{i^{*}}$ to begin with
- Condition 2 in the previous slide implies that for all $i$, $p \cdot \widehat{x}^{i} \geqslant p \cdot w^{i}$
Adding over all agents we get:

$$
\sum_{i=1}^{l} p \cdot \hat{x}^{i}>\sum_{i=1}^{l} p \cdot w^{i}
$$

Which in turn implies

$$
p \cdot \sum_{i=1}^{l} \widehat{x}^{i}>p \cdot \sum_{i=1}^{l} w^{i}
$$

## Proof

By definition of an equilibrium we have that

- Condition 3 in the previous slide implies $p \cdot \hat{x}^{i^{*}}>p \cdot w^{i^{*}}$
- Otherwise, why didn't $i^{*}$ pick $\widehat{x}^{i^{*}}$ to begin with
- Condition 2 in the previous slide implies that for all $i$, $p \cdot \widehat{x}^{i} \geqslant p \cdot w^{i}$
Adding over all agents we get:

$$
\sum_{i=1}^{l} p \cdot \widehat{x}^{i}>\sum_{i=1}^{l} p \cdot w^{i}
$$

Which in turn implies

$$
p \cdot \sum_{i=1}^{l} \hat{x}^{i}>p \cdot \sum_{i=1}^{l} w^{i}
$$

Which contradicts what Condition 1 in the previous slide implies.

- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
- Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
- Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
- Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?
- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
- Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
- Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?
- Not in general...
- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
- Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
- Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?
- Not in general... but what if we allow for a redistribution of resources?


## Lecture 4: General Equilibrium

Is there always an equilibrium?

Is the equilibrium unique?

First welfare theorem

Second welfare theorem

## Lecture 4: General Equilibrium

## Is there always an equilibrium?

## Is the equilibrium unique?

First welfare theorem

Second welfare theorem

## Second welfare theorem

## Theorem

Given an economy $\mathcal{E}=\left\langle\mathcal{I},\left(u^{i}, w^{i}\right)_{i \in \mathcal{I}}\right\rangle$ where all consumers have weakly monotone, quasi-concave utility functions. If $\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)$ is a Pareto optimal allocation then there exists a redistribution of resources $\left(\widehat{w}^{1}, \widehat{w}^{2}, \ldots, \widehat{w}^{\prime}\right)$ and some prices $p=\left(p_{1}, p_{2}, \ldots, p_{L}\right)$ such that:

1. $\sum_{i=1}^{l} \widehat{w}^{i}=\sum_{i=1}^{l} w^{i}$
2. $\left(p,\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)\right)$ is a competitive equilibrium of the economy $\mathcal{E}=\left\langle\mathcal{I},\left(u^{i}, \widehat{w}^{i}\right)_{i \in \mathcal{I}}\right\rangle$

- Great, you don't need to close the markets to achieve a certain Pareto allocation
- Great, you don't need to close the markets to achieve a certain Pareto allocation
- You just need to redistribute the endowments
- Great, you don't need to close the markets to achieve a certain Pareto allocation
- You just need to redistribute the endowments
- Ok... but what re-distribution should I do to achieve a certain outcome? No idea
- Ok... but how can we do this redistribution?
- Great, you don't need to close the markets to achieve a certain Pareto allocation
- You just need to redistribute the endowments
- Ok... but what re-distribution should I do to achieve a certain outcome? No idea
- Ok... but how can we do this redistribution? Not taxes, since they produce dead-weight loss
- In contrast to the first welfare theorem, we require an additional assumption that all utility functions are quasi-concave.
- What if they are not? consider the following:

$$
\begin{array}{r}
u_{A}(x, y)=\max \{x, y\} \\
u_{B}(x, y)=\min \{x, y\} \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

In this example, all points in the Edgeworth Box are Pareto efficient. However we cannot obtain any of these points as a competitive equilibrium after transfers.

