Espinosa, Tarupi y Azuero Microeconomía III Taller 3

Temas: Teoría de Preferencias Reveladas Teoría del Productor

- 1. Para las funciones:
- a. $f(\mathbf{x}) = [\min(a_1x_1, a_2x_2, ..., a_nx_n)]^{\gamma} \operatorname{con} \gamma > 0, \ \forall j \ a_j, x_j \in \mathbb{R}_+$ b. $f(\mathbf{x}) = \binom{n}{i=1}a_ix_i^{\gamma} \operatorname{con} \gamma > 0, \ \forall j \ a_j, x_j \in \mathbb{R}_+$ c. $f(\mathbf{x}) = \binom{n}{i=1}a_ix_i^{\rho} \stackrel{\gamma}{\rho} \operatorname{con} \gamma, \rho > 0, \ \forall j \ a_j, x_j \in \mathbb{R}_+$ d. $f(\mathbf{x}) = A_{i=1}^n x_i^{\alpha_i} \operatorname{con} A > 0, \ \forall j \ \alpha_j, x_j \in \mathbb{R}_+$

Para cada función encuentre la $TMST_{x_ix_j}$, el grado de homogeneidad, rendimientos a escala y elasticidad de sustitución.

- 2. Definiendo la elasticidad a escala cómo $e\left(\mathbf{x}\right) = \left[\left(\frac{\partial f(t\mathbf{x})}{\partial t}\right)\left(\frac{t}{f(t\mathbf{x})}\right)\right]$. Muestre con las funciones de producción del punto 1 que $e\left(\mathbf{x}\right)$ es exactamente el grado de homogeneidad de la función.(hagalo para cada función de producción)
- 3. Sean las canastas $\mathbf{x}_1 = (1, 2, 3, 5)$ y $\mathbf{x}_2 = f(\mathbf{x}_1)$ con precios $\mathbf{p}_1 = (4, 3, 3, 2)$ y $\mathbf{p}_2 = (1, 2, 3, 4)$, respectivamente. Esto quiere decir que la canasta \mathbf{x}_i fué escogida con precios \mathbf{p}_j , para j=1,2.

Restrinjamos las funciones $\mathbf{x}_2 = f(\mathbf{x}_1)$ a funciones multiplicativamente separables. Esto quiere decir que si $\mathbf{x}_2 = \mathbf{x}_1 * 10$, entonces $\mathbf{x}_2 = (10, 20, 30, 50)$.

Encuentre una función $f(\mathbf{x}_1)$ en el cual se cumpla WARP y otra en el cual se viole WARP.