
Lecture 8 -
Beyond…

>ĞĐƚƵƌĞ�ϴ�Ͳ �ĞǇŽŶĚ�ďĂƐŝĐƐ�ŽĨ�K>^͘ƉĚĨ
Thursday, October 8, 2020 3:59 PM

Beyond the basic of OLS 

Mauricio Romero 

Beyond the basic of OLS 

A few things that don't get enough attention 

Error structure 

Statistical power 

Beyond the basic of OLS 

A few things that don't get enough attention 

1- re ru( 1 

t 1(3 



. s . Beyond the 

interpret . coefficients/ regression table 

lnterpretin ss,on output 

• Great, you ran a regression 

• Let's assume it h as a causal int erpretation (big if) 

• How do . you interpret the results? 

Warning! 

• Be careful not to conf use percent with - percentage point 

• A ch ange from 10% to 130 1/o ,s a rise of 3 (13-10 ) percentage points 

• This is no t equal to a 3% chan ge, rather it' , s a 30¾= 10013- 10 . 10 increase 

Level-level ,on 

• If you have a level- level regression 

4 = /3o + /3, x; + u; 

• If you increase x b ~i3 Y one / ' we expect y to ch (:'l 
ange \.~ 
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An example 

• A regression of wages on : Age (in years), race (black= l) and IQ percentile (0-100) 
~ 

• For every year , we expect wages to change by /3age USO 

• On average, we expect wages to higher / lower for blacks by a..,_ USD than for 

non-blacks '3~, 
• For every percentage point increase in IQ, we expect wages to change by r 

USD ~ 

Simulations! 

l i brary (woo ldr idge) / 

l i brary (sta r gaz e r) 
dHa ( " w~g e 2" } 

::Je 2S IQ Pe r c e nt il e quanti le ( wag e 2SIQ se g(O l p ] )) 

l e v l e v=lm (C \ - ~ l e + ~ ~ · data = wage 2 ) 
summary ( l e~ ) 

~ :;:~:: ; a tt~: !. e.=·~~~:~ ~:~~;~:a yo :~ ~~. :~:~UE 
out- " Le c tu res/ t ab l e s / l e vle v . te x ' , 

c~v~ r iate . l_a ~els= c (" IQ ( perce n t i I e) Age B la c k(= l ) " ) 

d 1g 1ts = 2 , d 1g1 ts . e xtra = l , no . sp a c e =T, co ln am es= F 
d e p . va r . c a pt i on d e p . var l :,bels '" Wage" 

co lumn.sep . w id t h- " Op t 

omit . stat = c ( " a dj. rsq" 

Call: 
lm(formula = wage - IQ_Percentile + age+ black, data = wage2) 

Residuals: 
Min lQ Medi an 3Q Max 

-803.60 -271 . 87 -62.62 212 . 27 2174.38 

Coefficients: 

(Intercept) 
IQ_Percentil e 
age 
black 

Si gn i f . codes: 

Estimate Std. ErrortvaluePr(> lt l ) 
332 . 4888 150 . 2711 2 . 213 0.0272 * 

0 . 1320 0 . 5615 0 . 235 0.8141 
19.4666 4.1241 4.720 2.72e - 06'** * 

- 248 . 0806 38 . 2995 - 6 . 477 l.5le - 10 *** 

0 , ,.,.,. , 0 . 001 ' ** ' 0 .01 ' * ' 0 .05 '. ' 0 . 1 ' 

Residual standard error: 391.2 on 931 degrees of freedom 
Multiple R-squared: 0 .06681 , Adjusted R-squared: 0 . 0638 
F-statistic: 22 . 22 on 3 and 93 1 OF, p-value: 6.71e-14 

Level -Level 

10 

Wage Y=- Po~+~~ .. 
IQ (percentile) 

Age 

Black(= l) 

0.13 

(0.56) 

19.47'" 

(4.12) 

- 248.08"' 

I 

(38. 30) ...__,,. :,() -.J ~ ~ ) s,.vvo { 0- , rllt-·~ 
_____ __,\c-.:.L___...~50~.2~7J.,,._,,,___ ~(A tJCO 
Constant 

Observations 

No te: 

935 

'p< 0.l ; " p< 0.05; " 'p< 0.01 
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Log-level Regression 

• If you have a log-level regression I 

• If you increase x b..._ .. on,.e .... _..._. ... ...,,.c:a;; 
r/!-)?G f, 

• Technical ly, %~y = l00(efl1 - 1 

• But %L::.y = l00(e ' - 1) se 100;31 for values -0 .l < 31 < 0.1 ~, ' --0.( ~ ~ I e::_0. 
• You can only include observations for which Yi > 0 

• Only do it if this doesn't introduce bias into your sample 

• In general, only do it if Yi > 0 for almost all i 

• Adding 1 or 0.1, or 100 is not a valid fix 1c=- S,ll<nA o !> t £?, ~ 1 
An example 

• A regression of In( wages) on: Age (in years), race (black= l) and IQ percentile 

(0-100) 

• For every year, we expect wages to change by 100,Bage percent 

• On average, we expect wages to be higher /lower for blacks by 100_,C percent 

than for non-blacks lJ,d<.. 

• For every percentage point increase in IQ, we expect wages to change by 

100/3,Q percent 

Simulations! 

logl e v= lm ( log (w~ge ) IQ_P e ,c e ntil e - ~ge - b l~ck d~t~ = w~ge 2 ) 

summary (log lev) 
stargazer( loglev, t i tl e =" Log-Lev e l a l ign=TRUE , 

type-" late x' , omit. t a ble . layout ~ " ~ 1a " 

out=" Lectu res/tab les/log lev .tex" 
cova r iate. labels= c ("I Q ( p e rc e nti l e ) ""Age .. B lack(= l ) " ) 
di gits - 2 , di gits . c xtr~ - l , no. spacc- T, coln a me s- F 
dep . va r . capt ion=" "" , dep . var . labels=" l n(Wage} 
co lumn.s e p. wid th="" Opt he ader= F. 
omit . stat - c ( " adj . , sq· s e r")} 

Cal l : 
lm(formula = lwage - IQ_Percentile + age + black, data = wage2) 

Residuals: 
Min lQ Median 3Q Ma x 

- 1.98581 - 0.25765 0.01094 0 . 27996 1 . 30084 

Coeffi cients : 
Estimate Std. ErrortvaluePr(> ltl) 

(Intercept) 6.128e+00 l.556e - 01 39.378 <2e - 16"" .. 
IQ_Pe r cent ile -l.153e-05 5 . 814e-04 -0.020 0.984 
age 2.083e - 02 4.271e - 03 4.8781.26e - 06 .. * 
black -2.852e -01 3 . 966e -02 -7.191 1.Be-12*** 

Signif . codes: 0 '***' 0 . 001 '**' 0.01 ' *' 0 . 05 '.' 0.1' 

Residual standard error : 0 . 4052 on 931 degrees of freedom 
Mul tipleR-squared : 0.07746, AdjustedR-squared: 0.07449 
F- statistic: 26 .06on 3and931DF, p- val ue : 3 . 438e - 16 
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IQ (percentile) 

Age 

Black(=l) 

l Constant 

Observations 

Note: 

Level- log Regression 

~-LocY 

Log-Level 

ln(Wage) 

- 0.000 

(0.001) 
0.02*** 

(0.004) 
- 0.29"' 

(Do:~ 

~ ~:;.. 1 
935 

'p<0.1; "p<0.05; '"p<0.01 

• If you have a~ regression 

y; = f3o + f31 ln(x;) + u; 

• If you increase x by one percent (NOT BY ONE PERCENTAGE POINT!), we 

expect y to change by fc1-o units of y 

• You can only include observations for which x; > 0 

• Only do it if this doesn't introduce bias into your sample 

• In general, only do it if x; > 0 for almost all i 

• Adding 1 or 0.1, or 100 is not a valid fix 

An example 

• A regression of wages on: ln(Age), race (black=l) and ln(/Q) (IQ is the 

percentile) 

• For an increase in 1 percent in age, we expect wages to change by ~ USO 

- 'It'-"'" 
• On average, we expect wages to be higher /lower for blacks by 1iit" USO than 

for non-blacks 

• For an increase in 1 percent in the IQ percentile {that is, a percent change in 

percentage points), we expect wages to change by {i USO 

Simulations! 

le v log lm (w:>ge log {I Q_P Hcenti le ) - log (age ) + black w:> ge 2 ) 

summMy (levlog) 
stargazer ( lev log , t i t I e =" Leve l - Log " a I ign =TRUE , 

typ e-" I He x·· , omit . uble . l:,yout - " _ I :," 

out-" Lec tures/ t ab les/ le v log . lex " 
covar iat e. la b els= c (" In ( IQ (percentil e ))" "ln(Age }" ,"Bla ck(= l )" ) , 
di git s = 2 , di git s . e xtra=l , no. s pac e=T, coln :, mes= F 
dep. var . caption - "'' ,de p. var . labels- " Wage" 
column.sep.width=" Opt hea d er=F , 
omit . stat = c ( " adj . rsq"' s er" ) } 
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Call: 
lm(formu l a = wage - log(IQ_Percent i le) + log(age) + black, data = wage2) 

Residuals: 
Min lQ Median 3Q 

-803.07 -271.50 -60.65 210.88 2180.13 

Coefficients: 

(Intercept) 
log(IQ_Percentile) 
log(age) 
black 

Estimate Std. Error t value Pr(> l t l ) 
-1340.20 536.08 -2.500 0.0126 * 

13.98 49.60 0.282 o. 7782 
648.41 136.38 4.754 2.30e-06 *** 

-247.97 38.29 -6.4771.51e-10 *** 

Signif. codes: 0 ' *** ' 0.001 '* * ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 391. 2 on 931 degrees of freedom 
Multipl e R-squared: 0.06713, Adjusted R-squared: 0.06412 
F-statistic: 22.33 on 3 and 931 DF, p-value: 5.731e-14 

ln(IQ (percentile)) 

In(~) 

E ck(=l) 1 
Constant 

Observations 

Note: 

Level-Log 

Wage 

13.98 

(49.60) 

648.41 *** 
(136.38) 

- 247.97"' 

(38.29) 

-1, 340.20" 

(536.08) 

935 

' p< 0.l; "p<0.05; ' "p<0.01 

log-log Regression 

• If you have a log-level regression 

ln(y;) = f3o + f31 ln(x;) + u; 

• If you increase x by one percent (NOT BY ONE PERCENTAGE POINT!), we 

expect y to change by /h percent 

• You can only include observations for which x; > 0 and y; > 0 

• Only do it if this doesn't introduce bias into your sample 

• In general, on ly do it if x ; > 0 and y; > 0 for almost all i 

• Adding 1 or 0.1, or 100 is not a valid fix 

An example 

• A regression 

percentile) 

• For an increase in one percent in age, we expect wages to change by /3age percent 

• On average, we expect wages to be higher / lower for blacks by /f~ eercent 

than for non-blacks ~ 

• For an increase in one percent in the IQ percentile (that is, a percent change in 

percentage points), we expect wages to change by /310 percent 
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Simulations! 

loglog=lm ( log (wage ) " log (IQ _ P e rc c ntil e ) + log (dge ) +black, data= wage 2 ) 

summary (log log) 
stargaz c r( lo gloi., t i tl c = "Loi.- Lev e l align=TRUE , 

typ e = " latex··, omit. t a b le . layout = " = la" 

out=" Lectures/tab les/log log . tex " 
covar iate. labcls= c (" In (IQ (p ercenti l e ))" ln(Age )" ,"Blac k(= l )" ), 
di git <- 2 , di git<. e xtra - 1 , no. s pac c- T, colnames- F 
dep. var . capt ion="" , dep . var . l abels=" l n(Wage) 

co lumn.s e p.width=" Opt he ad er=F. 
omit . stat - c ( "adj . ,sq· scr")} 

all: 
m(formula = log(wage) - log(IQ__Percentile) + log(age) + black, 

data = wage2) 

esiduals: 
lQ Median 3Q 

- 1.98259 - 0.2586S 0.01121 0.28098 1.30397 

oefficients : 
Estimat e std. ErrortvaluePr(> l t l ) 

(Intercept) 4 . 3985406 0.5S51443 7.9236.S8e - 1S **" 
og(IQ_Pe r centi le) - 0 . 0009437 0.0S13S99 - 0 . 018 0.98S 
og(age) 0 . 6929047 0. 1412305 4 .9061.lOe - 06 *** 
l ack - 0. 28S0449 0.0396476 - 7 .189 1. 33e - 12 **~ 

ignif . codes: 0 ' *** ' 0 . 001 ' ** ' 0 . 01 ' * ' 0 . 0S ' . ' 0 . 1 ' '1 

esidual standard error: 0 . 40S1 on 931 degrees of freedom 
ultiple R- squared: 0 . 07774, Adjusted R- squared : 0 . 07477 

F- statistic : 26 . 16on3and931DF, p- value : 2.994e - 16 

ln(IQ (percentile)) 

ln(Age) 

Black(= l) 

Constant 

Observations 

Note: 

Log--Lo~ 

ln(Wage) 

-0.001 

(0.05) 
0.69*** 

(0.14) 

- 0.29"' 

(0.04) 
4.40*** 

(0.56) 
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'p<0.l; "p<0.05; "'p<0.01 
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Leverage 
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Leverage 

• Remember that 

• We can rewrite as: 

• If j. ~ x, the 

28 

Leverage: Big Picture 

• That was an extreme case (x; = ><l but generally speaking: 

• The farther an observation is from X, the more it affects the OLS estimator 

• This is called "leverage" 

• See a recent discussion on Twitter of economist arguing about this 

https: //twitter. com/arindube/status/1279919438419165184 ?s=20 

29 
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Beyond the basic of OLS . . g g 

The perils of p-hacking -

https: I /xkcd. com/882/ 

Beyond the basic of OLS . . g g 

g 

g 

What if your outcome is a dummy? 

What if your outcome is a dummy? 

• All we have talked about still holds 

{ 

• ~ have very strong assumptions the shape of the error term) 

• Regression is more robust in general 
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An example 

• A regression of employment (= l for employed, = 0 for unemployed)) on: Age, 

gender (female= l) and IQ (percentile) 

• For an increase in 1 year of age, we expect the probability of employment to 

change by 100_8age percentage points 

• On average, we expect the probability of employment to be higher for females by 

lOO;C percentage points than for males 

• For an increase in 1 percentage point in IQ , we expect the probability of 

employment to change by 100/)JQ percentage points 

Beyond the basic of OLS . . g g g 

Ordinal / 9 tegoric.Wata -------:P~ 
l..__ __ ___,{"1'"71 7 {ot,r.161,;1- i) 

-~i)li,:bA 

What if your outcome is Ordinal/Categorical? 

• Then you cannot do OLS 

• OLS assumes a metric 

• Distance between Y = 1 and Y = 2 is the same as Y = 2andY = 3 

• Unclear in what units /3 is 

What can you do? 

• Transform your data to binary 

• Do order probit/ lo!!t. 
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Beyond the basic of OLS 

A few things that don't get enough attention 

Error structure 

Statistical power 

40 

Beyond the basic of OLS 

Error structure 

41 

Variance of OLS estimators 

The correct variance estimation procedure is given by the structure of the data 

• It is very unlikely that all observations in a dataset are un 
identical distributions (homoskedasticity) • 

---------- ~---'-:':?_, 

• For instance, the variance of income is often greater in families belonging t] top 
deciles than among poorer families (heteroskedasticity) 

Some phenomena do not affect observations individually, but they do affect 

groups of observations uniformly within each group (-

Beyond the basic of OLS 

Error structure 

Heteroskedasticity 

43 



OLS inference is generally faulty in the presence of heteroskedasticity 

figure 2.9 
V;ir(~uc) increllingwitheduc. 

Heteroskedasticity 

• Assume 
.. 2 

Var(u;jx;) = a~ 

• Fortunately, OLS is sti ll usefu l (/J st ill consistent / unbiased) 

• Note that errors are stil l independent from each other 

• The variance of our estimator, /Ji equals: 

wage 

• When crf = cr2 for all i, this formula reduces to the usual form, 

,:;~,r:,-n' = cr2(X'xJ-1 

Robust standard errors 

• A valid estimator of Var(B,) for heteroskedastic ity of any for m (includi ng 

homoskedasticity) is 

"" ( - i2-2 ~ 
Var(B)= L.,;~ , x; - x u; =(X'x)-1X'('-' · ,-,)x(x'x)- 1 

, 1 L7=1 (x; - x)2 {;t x,x1 u, 

which is eas ily computed from the data after the OLS regression 

• As a ru le, you shou ld always use "robust standard errors" 

Simulations! 

l i b r a r y (sand wi ch) 
a l pha=O # i nt e rc e pt 
Re ps=1000 #how man y s i mu lations? 
Nobs=J00 #n<Jmbe r of obs 

~ S.,quenceBetas- seq {0 , 1 , 0 . l )ff lets do different 

-IJ Fract ionS ig n i f i can t =NULL #fract ion sign i f ican t 5\% l e ve l 1~;:~c~~:~::grJJ:~c; te~~p~s:t,,,~~I~, # fr H tion , ignifiont 5\% le v e l wh e n u , i ng robust 

bctaVc c tor robust=N ULL ~mean est i ma t or robust J 

47 



,::::: :::~::i~~;~~i~~:::~:~e sim,il a tio n • 

b e t a .es t i mate . robu , t= re p {N/\ , Re ps) 

b Ha . p valuc . r obust- rep (NA,R"ps} 

~ m.atrix ( runi f( Nobs. - 5 , 5 )) #ge ner at e some x d a ta 

~ , n l : Rcps){ 

-,Y=a:;~.::t::x!;nn0c,';;~o~~~:~:~ ):t• with hrn,rosked ast i city 
~ ~~:':11;.r;:;i,t;:t~~(~~sf~!ocf //.save ,cs u l ts fr om OLS ta ble 
~ beta . est imate(r ]=Resu lts0LS[ 2 , l ] 

-----1'; ;~tcas~,~::
1~;};1~::,:~:t•il~S [! ~~] y i el d s sa me r H u lt< as sta t a 

Resu ltsRobust=coeftest{OLS, V.J;:1_V = ~ (OLS type= " HCl " )) 
__...'.f betil . e st imatc .robust [r )= ResultsRobus t [ 2 , l ] 
~ be ta .pv al u e . robust[,] - R e sultsRobu<t [l , 4 ] 

} 

4 ~:::~,::~i::~~.i:;n:::{ ~h,:,::::~i;~1i~tca0n\ ~:::n( bw .pvalue<0.05 }) 
-\ FractionS ign i ficar,Lrobust=c (Fract ionS i gn i f icanL robust · '"l!ii J) ( bP q p a l e rob st <O OF )) 

betaVect o r=c (be t aVector. ~ c)} 

bet a V ec t or . robust= c ( bcUV ccto r . robust , m~ c t a . cst i m~t e robu" t}) 

No bias) 

0.4© 
~ Classic SE 
~ Robust SE 

48 

49 

Power Curve - Incorrect type-I error from classic OLS, correct from robust SE) 

Proportion of times we reject the null at a= 0.95 

50 

Error structure 

Cluster standard errors 

51 



Clustered data 

• But what if errors are not independent? 

• Maybe observa tions between units in a group are related to each other 

• Imagine you ra ndom ly assi ng a treatment at t he school leve l (e .g., ext ra resources) 

• The unobservables of kids belonging to the same school are correlated (e .g., 

teacher qua lity, recess rout ines) 

• The unobservables of kids in different school are unl ikely to be correlated 

• Then independence of errors ac ross observat ions is vio lated 

• But maybe independence holds across schools , just not withi n schools 

Simulations! 

~ :ftnumbero f c la sseso r schools 

~rClass= lO #n u m berofobspe r s c hoo l s 
Reps= I000 # r e p e titio n • 

SequenceBHas ~ ) #t ry d i ffHent bet a s (tre~tment e ffects) 

alpha=O # i nte r cept 

I:::::::~~::~:;::: ~:~~~~.7~~~~~i;nf r:~ !inoi: i \"i :: i ~~:: ~ : v; ~% I ev e I when u s i n g robust 

I ::::~:::::~~~~s::~~L e;~:~t::t i ma t o, robust 

Simulations! 

fo: ~!; r t~: ::~cuoe;::
8

t r:a;)~h e simul a tions 

/ b eta _est i m H e rep (NA. Reps) 

I b et ~ . pvalu e= re p {N/1 , Reps) 
I bet ~ _ es t i m ~te _ robust - rep {NA , Reps) 
1 beta _pva lue _robus t = rep (NA,Reps} 

~ X=n . m ~trix ( runif (Stud e nt sPe rC lass • Classes, - 5 , 5 )) #gen e rate some x data I ";;;o~:~~,::::;~,. (~ m,~s. ""Pl§ Prr \l o» l 
-.9Schoh . In d ivi d u :,!rnorm ( StudentsP e rC las so C lass e s , sd= l ) 1 Y-alp ha+ be ta • X+ Schoks _ C I ust e r-Schoks _ I nd iv id u a I 

OLS=lm (Y-X) #estimate OLS 

Resu ltsOLS= ummary ( OLS )S coef 
~ be U . e st imate(, ]- Resu ltsOLS[ 2 , l ] 

;,,;~tea;u~;:
1
~;}~ )::::~:t•gl ~; [~( ~ ] y iel ds same res u l ts as stata 

: cets: ~:·s~io~~:: _ :f:U:;~: )'~ R: sul ;:~obu:~[v2H. i ] OLS ' t yp e "HCI " )) 

beta _ pva lue _ robust [ r] = Re su l t sRobust[ 2 , 4 ] 

) 
//-Save th e r es u Its for the g ive n v a l u e of bet~ 
Frac ti onS ig n i fi can t=c ( F ractionS ign ifica nt , mean ( beta pva lue ;;.Q - 05 )) 

: ; :.'~ ~:~:,i! cn/:~ct:~:~::~~:::~ i :;taac_t ~:;,~i~tne1~a n f _ ro b ust , mean ( beta pva lu e _ robust <1l . 05) ) 

betaVector _ robust= c ( betaVec to r _robust , mean ( beta _est imate robus t) ) 

No bias 

--&-- Classic SE 
-'- RobustSE 
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Power Curve - Incorrect type-I error from classic OLS and from robust SE) 

Proportion of times we reject the null at a= 0.05 

£ I 0.6 

" 
-e- Classic SE 
-b- Robust SE 

~ 0.4 
B 

1 

56 
True ~ 

Cluster robust standard errors 

more times than we thought at a given level) 

• We kneed to allow for arbitrary correlation within group 

• Instead of summing over each individual, we first sum over groups 

• I'll use matrix notation as it's easier for me to explain by stacking the data 

Clustered data 

• Let's stack the observations ;;,by:,_;;c;.;lu:;st;.;e_, ___ ..., 

[ Yg = Xg /J+ Ug ] ~ ~";)C(/e.(J\~ • 

• The OLS estimator of 8 is: ---------.. 

~ 
• The variance is given by: ----------

Clustered data 

With this in mind, we can now write the variance-covariance matrix for clustered data 

Var(/3) = [X'x] - 1 

- . ;- 1 . L--.--1""'1 h,n.tu.lA 
where ug are residuals from the stacked regression ·y ( 

r'1cGA &:-

• In STATA: vce(cluster clustervar) 

• In R use lfe package -



Simulations! 

.., l i b r ;ar y ( l fe) 
C la s s e s ~ so # number of c las ses or schoo l s 

o f o bs per schoo ls 

Seq uence Betas- seq {0 , 1 , 0 . 1 ) #,tr y d i fferent bet a s (treatment e ff ect s ) 

al p ha = O # i n tH c e pt 
F r a c t ion S ig nifi ca n t=N ULL # fract ion si gn i f icant 

Frac ti onSigni fic ant ro b ust-NUL L # f rac ti on 

F r a c t i onSign i f i ca n t _ c l us ter = NU LL #frac t i on 

Simulations! 

for ( be ta i n S <: qu e nce Be t a s){ 

tfs ave the outcomes from t h e si mu lat ions I beta .pva l ue = rep { NA , Re ps) 
b c ta . pvalu c . ro bust=r e p (NA, Re ps) 
b Ha _ p valuc _ cluster - re p ( NA, Re ps) 

~:~: ::'~ ~td~ ~aasts~'.,:'.,~:l~ ~ ~ :: 1:1~ ', ;)~~~:::.,d,en ;; :l:rcCcl~ ;;v 

r':l.l~if.(i f jij~~f.iiiij:~if ~iiij~;;;jii;;i;~:;;,:~m OLS 

::teas_u~::,::0_~0 ~: : ~~ ~]~~LSS rpva I [ 2] / 

~=tea•~·~::,::o_mcl : ~~ = : i: ]~ ~LSS cpval [ 2 ) / 

} 
#S;;ve th e r e s u I t s for the g iv e n v a l u e of be ta 
Fraction Si gn i fic a n t c ( F ,a c tionS i gn i fic:, n t , me;;n ( b ~ . 05 ) ) 

FractionS ign i fi c a n t _ro b u st=c (Fract i o nS i gn if ic an t_robust . mean ( beta_~< 0 . 05 )) 
Fracti o nS ign i fi can t _ clus t e r=c ( Fr ;;c t i o n Sig n if i c ant _ clus t er , mean ( be t;; . pvalue _c l us t e r <0 . 05 )) 

Power Curve) 

Proportion of times we reject the null at a = 0.05 

£ 
g> o.6 

i 
' g 0.4 

-e- Classic SE 
-lir- RobustSE 

Cluster SE 

The importance of knowing your data 

True ~ 

• In real world you should never go with the "independent and identically 

distributed" (i.e., homoskedasticity) case. Life is not that simple. 

• You need to know your data in order to choose the correct error structure and 

then infer the required SE calculation 

• At a minimum, use robust standard errors 

• If you have aggregate variab les, like class size, you need to consinder clustering at 

that level 
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When to cluster? 

• Case 1: If sampling follows a two stage process where in the first stage, a subset 

of clusters were sampled randomly from a population of clusters, and in the 

second stage, units were sampled randomly from the sampled clusters 

• Case 2: When clusters of units, rather than units, are assigned to a treatment 

When to cluster? 

relies on "asymptotic results" based on the number of clusters ~ - not on the 

total sample size N 

• Can $ use cluster SE if number of clusters is "large" (usually over,...._, 40 - 50) 
---.r 

• If number of clusters is small consider: I • ~ ng the datg at the "cluster" leve~ 

• Wild bootstrap 

• ~ if you have an experiment) 

When to cluster? 

• Two good reads on clustering: 

.::::v . 

:s;· 

Cameron, A.C. and Miller, D.L., 2015. A practitioner's guide to cluster-robust 

inference. Journal of human resources. 
http: //jhr. u-wpress. org/content/50/2/317. refs 

Abadie, A., Athey, S., lmbens, G.W. and Wooldridge, J., 2017. When should you 

adjust standard errors for clustering? (No. w24003). National Bureau of Economic 
Research. https: //www.nber.org/papers/w24003 

Beyond the basic of OLS 

A few things that don't get enough attention 

Error structure 

Statistical power 
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Beyond the basic of OLS 

Statistical power 

Introduction 

• In a simple experiment the average treatment effect is the difference in sample 

means between the treatment and the control group 

• This is the OLS coefficient of ,3 in the regression 

Y; = o +J T; +E; 

Regression analysis of OLS 

~~T;< rN 
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= a 2(X'X) - 1 

Statistical power 

How many observations are enough? 

-:: cl .l- /' 
~~)l-1 
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Statistical power 

How many observations are enough? 

Definition 
The power of the design is the probability that, for a given effect size and a given 

statistical significance level, we will be able to reject the hypothesis of zero effect 

Statistical power 

• Is the unit of treatment the same as the unit of analysis? Or, is the 

treatment to be administered to a 'cluster' of units? 

Statistical power 

• Is the unit of treatment the same as the unit of analysis? Or, is the 

treatment to be administered to a 'cluster' of units? 

• Examples of individual randomizat ions: 

• Individuals who are given mobile phones to induce them to use an m-banking 

platform 

• Farmers individually provided with improved agricultural inputs 

• Students admitted to an el ite school by a lottery process 

Beyond the basic of OLS 

Statistical power 

Randomizing at the Unit of Analysis 
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Randomizing at the Unit of Analysis 

• The estimate of treatment effect is ,8 in the regression 

Y; = o + (JT; +s; 

• The mean of fj is (3 (the true effect 

• The variance of ,8 i V(,8) = P 1~ : N 

• a 2 is the variance of the outcome ( Y;) 

• p is the proportion of treated units 

• : is the number of observations 

Randomizing at the Unit of Analysis 

• We are generally interested in testing the null hypothesis (Ho) that the effect of 

the program is equal to zero against the alternative that it is not 

• The significance level, or size, of a test represents the probability of a type 11 
error, i.e., the probability we reject the hypothesis when it is in fact true 

• The power of the test the probability that we reject Ho when it is in fact false 

Randomizing at the Unit of Analysis 

• We are generally interested in testing the null hypothesis (Ho) that the effect of 

the program is equal to zero against the alternative that it is not 

• The significance level, or size, of a test represents the probability of a type I 

error, i.e. , the probability we reject the hypothesis when it is in fact true 

• The power of the test the probability that we reject Ho when it is in fact false 

We will constantly use the f~a~c~t !th~a~t.:,.: ------...... 

Randomizing at the Unit of Analysis 

• We are generally interested in testing the null hypothesis (Ho) that the effect of 

the program is equal to zero against the alternative that it is not 

• The significance level, or size, of a test represents the probability of a type I 

error, i.e., the probability we reject the hypothesis when it is in fact true 

• The power of the test the probability that we reject Ho when it is in fact false 

We will constantly use the fact that: 

We often normalize the outcome and present results in terms of SD (so (]" 2 = 1). -
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Significance level - Assume null is true (no effect) 

Gray area is the probability we reject the nu ll when it is true 

Power when the effect is 31 

For a true effect size fJ this is the fraction of the area under this curve that falls to the 

right of the critical value t% 

Power when the effect is J = 0 1 
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Power when the effect is 3 = 0 1 

Blue area is the probability we reject the null when ,8 is 0.1 78 

Power when ,! = 0 1, N = 4, and p = 0 5 
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Power when 3 = 0 1, N = 100, and p = 0 5 
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Power when ,! = 0 1, N = L 000, and p = 0 5 
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Power when 3 = 0 2, N = 1. 000, and p = 0 5 

Blue area is the probability we reject the null when ,8 is 0.2 

Power when the effect is J = 0 3, N = 1. 000, and p = 0 5 --

Blue area is the probability we reject the null when f3 is 0.3 

Power when the effect is 3 = 0 3, N = 1,000, p = 0 5, and "= 0 7 

Blue area is the probability we reject the null when f3 is 0.3 

Statistical power and clusters 

• All these quantities we just looked at are related 

• fo ""'~' ' ,--O " m,-., .. ro, ~ '"" q 5 f; (P) 
19 > (tg + t1~:@ 

.. - 2 I 

4-'-: 5{,, 
1,% 
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Minimum detectable effect 

Randomizing at the Unit of Analysis 

• The standard is to set K = .Q..§...or K. = ~ 

• The standard is to set o: = 0.05 or o: = 0.1 

• The variance of outcomes tJ2 is typica lly the raw variance of the dependent 

var iable you intend to use 

• The sample size N is the number of observations in the study (you can change 
this) ._.. 

• The fract ion of the sample treated is :,jyou can change this) 

Effect vs Power 

@21 cr=J. 

I 

' r~o.5 

0.0 ~\ 0.2 

Erloct~'I!, 

Sample size vs MOE 

~+------
Somple size -

How should you think about the MOE? 
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• What is the treatment effect below which it is pointless to implement the program ~ 
and/or study its effect? 

• If sample size is too small, you're likely to end up with an insignificant result for 

something that actually matters 

Beyond the basic of OLS 

Statistical power 

Cluster Randomized Experiments 

• Is the unit of treatment the same as the unit of analysis? Or, is the treatment 
to be administered to a 'cluster' of units? 

Cluster Randomized Experiments 

• Is the unit of treatment the same as the unit of analysis? Or, is the treatment 

to be administered to a 'cluster' of units? 

• Examples of clustered randomizations: 

• Changing the business practices at a firm level and studying the impact on individual 

employees 

• Providing schools with new textbooks and studying the effect on individual student 

performance 

• Offering a new financial service to all residents in a village and studying the impact 

on micro enterprise outcomes 

• In a clustered randomization the power of the study is coming partly from the 

number of individuals in the study, and partly from the number of clusters in the 

study 
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Cluster Randomized Experiments 

• The estimate of treatment effect is.B in the regression 

Yij = a+ /3 Tj ~ 
.::.'\.:.)"-} 

• a 2 is the variance of the outcome (cu) 

• 1 2 is the variance of the outcome (w1) 

. / pis the proportion of treated units 'N ~t~ 

• J is the number of ;_c~lu:;.st~e~rs:...--..._, 

• The variance of ,8 is a,3 = P(~~~);J 

• n is the number of observations in each cluster / ~ (fl;.. 

~~) ~~tJ 

• The ICC can be obta ined using /oneway in stata 

Minimum detectable effect 

• The minimum detectable effect is given by 

Power Calculations Rules of Thumb 

• For an individual- level experiment, 200-300 observations will typically be sufficient 

to detect a reasonable effect size 

• For a clustered experiment, a low ICC (0.1) would need 50-100 clusters and > 5 

observations per cluster to detect a moderate effect. As the ICC gets larger, the 

number of clusters has to go up 

• For very complicated research designs, you can always use simulations to get the 

power of the design -------

93 

94 

G~~--t§J 
Q 

95 

96 




