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Abstract. Risk adjustment is vital in health policy design. Risk adjustment defines the
annual capitation payments to health insurers and is a key determinant of insolvency risk
for health insurers. In this study we compare the current risk adjustment formula used by
Colombia’s Ministry of Health and Social Protection against alternative specifications that
adjust for additional factors. We show that the current risk adjustment formula, which
conditions on demographic factors and their interactions, can only predict 30% of total
health expenditures in the upper quintile of the expenditure distribution. We also show
the government’s formula can improve significantly by conditioning ex ante on measures
indicators of 29 long-term diseases. We contribute to the risk adjustment literature by
estimating machine learning based models and showing non-parametric methodologies (e.g.,
boosted trees models) outperform linear regressions even when fitted in a smaller set of
regressors.
Keywords. Risk adjustment; Diagnostic related groups; Risk selection; Machine learning.

1 Introduction

The last three decades have seen several restructuring of public health systems around
the world. In Colombia, law 100 of 1993, transformed the public health system into
a competitive insurance market with three key components to it: 1) a benefits package
(POS) that defines all the services, procedures, and medications each enrollee has the right
to claim; 2) a group of health insurers (EPS); and 3) a mechanism for the payment of health
services provided that controls for enrollee heterogeneity and risk. Enrollees’ contributions
configure a cross subsidies system that helps insurers mitigate their financial risk and
reduce the incentives to “cream skim” [11]. Monthly risk premium fees are collected
from all enrollees with formal employment and then redistributed in form of capitation
payments (UPC) to every health insurer in the market. The redistribution is based on the
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specific risk profile of the insurer’s population of enrollees. The goal of a risk-adjustment
mechanism is to reduce annual health expenditure uncertainty by controlling for variables
that are not subject to manipulation by health insurers. In this document, we propose
a new risk-adjustment formula based on information available to the Ministry of Health
and compare different models based on machine learning techniques.

2 Risk adjustment literature

In a study for the Colombian health sector, [8] propose a new way to calculate the
UPC by including additional risk factors describing the morbidity distribution of the
enrollee population. The authors show that an ex ante morbidity risk adjustment using
long-term disease groups approximates better the empirical distribution of annual health
expenditures and, thus, reduces capital requirements of health insurers in the contributory
system. Other studies have shown that interactions between diagnoses and demographic
variables improve the predictions of models for annual health expenditure. These studies
include [10] and [3] in the Medicare system in the United States. More recently, [1] in a
study for Germany, and [5] in the Medicare system, use machine learning techniques such
as random forests and decision trees to find all relevant interactions between regressors in
order to include them in their final risk adjustment model. Predictive measures improve
significantly in both cases relative to the models without interactions.

3 Data and description

To predict the annual health expenditure of enrollees to the contributory system in
Colombia we use the Base de Suficiencia of the Ministry of Health and Social Protection
for the years of 2010 and 2011. We use the demographic characteristics and diagnoses
received by each enrollee during 2010 to predict the annual health expenditure in 2011
adjusted by the number of enrolled days in this year. For each enrollee we observe gender,
age, municipality of residence, insurer, provider, service cost, and ICD-10 diagnosis 4. We
categorize the municipality of residence in the three payment geographic areas defined
by the National Administrative Department of Statistics (DANE) (urban, normal and
special). ICD-10 diagnoses are grouped in 29 long-term disease pools [2]. Table 1 shows
some descriptive statistics of the cross-sections and the panel of enrollees. During 2010
there were nearly 24 million enrollees in the contributory system and during 2011 this
number increases to 25 million. The intersection of enrollees between these two cross-
sections consists of 13 million people. Notice that the individuals who are active enrollees
in both years have an average enrolled-days weighted health expenditure higher than the
average expenditure in the cross-sections. From the intersection of 13 million individuals,
we build two mutually exclusive datasets by randomly selecting 500,000 enrollees each.
One dataset is the training set where we will fit all of our models and the other is the test
set where we will compute the fitting measures.

4The 10th revision of the International Statistical Classification of Diseases and Related Health Prob-
lems is a medical classification compiled by World Health Organization
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Table 1: Comparison of 2010 and 2011 cross-sections with the panel of enrollees
2010 cross-section 2011 cross-section Panel

Number of enrollees 24,354,254 25,695,491 13,652,533

Capitation Payment (UPC) 2010 565,563 732,499

Capitation Payment (UPC) 2011 568,417 695,776

% of enrollees with long-term diseases during 2010 26.03 25.99

% of enrollees with long-term diseases during 2011 26.19 26.17

% of enrollees with long-term diseases in 2010 that upturn in 2011 9.85 7.86

% of enrollees without long-term diseases in 2010 that are diagnosed in 2011 10.01 10.00

Average enrolled days in 2010 306.5 310.8

Average enrolled days in 2011 303.4 311.0

% of enrollees who claim services in 2010 64.14 98.9

% of enrollees who claim services in 2011 64.05 83.2

Note: This table shows some descriptive statistics of the 2010 and 2011 cross-sections of the Base de Suficiencia and the panel

built from their intersection. We report the number of enrollees in each dataset, the UPC (360 ×
∑

i xi/
∑

i di), the percentage

of enrollees with long-term diseases, and the percentage of those whose health condition changes from one year to the other.

We also show the percentage of enrollees who claim at least one health service every year.

4 Results

In this section we show the out-of-sample fitting metrics for the linear models and
the machine learning based models. To build the models we take the following individual
traits: demographic characteristics (Demog), indicators of long-term disease groups (Dx)
indicators of hospitalizations (H), consults with specialists (E) and admissions to the in-
tensive care unit (U). The machine learning based models considered in this research were
random forest (RF), boosted trees models (GBM) and artificial neural network (ANN).
All the parameters of these models were obtained using cross validation. In the case of
the RF model, each tree is estimated using a random subset of predictors of size

√
X,

where X is the total number of predictors.5 We find that the optimal number of trees
is 680, which is close to what other authors have used when predicting health outcomes
with claims data and an imbalanced number of patients in each diagnosis group [4]. We
use the same number of trees for estimating the GBM model. This model consists of
fitting decision trees sequentially on a weighted sample from the previous tree. Weights
are higher for observations that the previous tree misclassified and lower for those that
were correctly classified. The data for each subsequent tree also includes the predictions
of previous trees multiplied by the shrinkage parameter. This is a regularization method
that helps avoid overfitting the data. Cross-validation shows that a relative large shrink-
age parameter and a relative small number of interactions between the variables achieved
the best prediction metrics in the train sample.6 For the ANN, we used 5 inner layers
and the back-propagation algorithm to estimate the optimal weight for each predictor in
each layer. We use a regularization method that consists of adding a penalty to the crite-
rion function -the sum of squared residuals- that is equal to the sum of squared weights
multiplied by a “decay” parameter. The decay of weights is chosen using cross-validation.

In any case, “Two stages” stands for the inclusion of the probability of claiming services
in the variable set, “WLS” stands for weighted least squares, and “FS” indicates the model
is fitted on the 21 variables resulting from the feature selection procedure.

5As shown in [6] the RF model is robust to different tuning parameters including the cardinality of the
set of predictors on which each tree in the forest is trained.

6These parameters differ from what other studies have found including [9], who use 232 trees in the
boosting algorithm to predict health costs using interactions between ICD-9 codes.
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Table 2: Out-of-sample fitting measures in the full distribution
Parameters Model RMSE MAE PR PR R2

(COP) (COP) annualized non annualized

WLS UPC 3,506,658 720,587 0.896 0.999 1.57

WLS UPC + Dx 3,440,928 694,404 0.892 0.999 5.23

WLS UPC + Dx + H 3,437,175 694,005 0.894 1.000 5.45

WLS UPC + Dx + H + E 3,435,470 691,169 0.892 0.999 5.53

WLS UPC + Dx + H + E + U 3,431,842 688,771 0.892 0.999 5.73

WLS UPC x H x E x U + Dx 3,432,097 683,209 0.893 0.999 5.71

5 + 0.05 ANN Demog + Dx (Two stages) 3,470,597 816,431 1.072 1.203 3.59

5 + 0.05 ANN Demog + Dx + H (Two stages) 3,455,518 785,698 1.058 1.189 4.42

5 + 0.05 ANN FS 3,455,366 774,190 1.064 1.179 4.43

680 RF Demog + Dx + H + E + U (Two stages) 3,607,413 735,027 0.981 1.097 -4.16

680 RF FS 3,465,301 712,820 0.975 1.087 3.88

680 + 3 + 0.1 + 50 GBM Demog + Dx + H + E + U (Two stages) 3,436,299 719,029 0.997 1.111 5.48

680 + 3 + 0.1 + 50 GBM FS 3,431,044 721,168 1.002 1.115 5.77

Note: This table shows the RMSE, MAE, R2, and annualized and non-annualized predictive ratios in the full sample. The first column

shows the parameters with which the machine learning based models were trained. For the neural networks (ANN) the first number

corresponds to the number of neurons in the inner layer and the second is the weight decay parameter. For the random forest model

(RF) the number indicates the number of trees, and for the boosted trees model (GBM) the correspond to the number of trees, the

dimension of variable iteractions, the contraction parameters and the minimum number of observations in non-terminal nodes,

respectively. Two stages indicates the model includes the probability of claiming a service and FS that the model is fitted over the

set of variables chosen using feature selection.WLS stands for weighted least squares. The RMSE and the MAE are reported in 2011

colombian pesos. Authors’ calculations from the Base de Suficiencia.

Table 2 shows the root-mean-square error (RMSE), the mean absolute error (MAE),
the R2, and the predictive ratios (PR) in the full sample. Results show linear models,
and in particular the current government formula, tend to underestimate the entire health
expenditure distribution by nearly 11%. Underestimation is problematic because it leaves
a portion of the health risk unassured. Although inclusion of an ex ante morbidity risk
adjustment with the dummy variables for the 29 long-term diseases reduces the MAE by
30,000 pesos and the RMSE by 60,000 pesos compared to the government formula, the in-
clusion does generate an increase in the overall predictive ratio. On the contrary, machine
learning models achieve a predictive ratio that is closer to 1. Notice that models that
exceed the predictive ratio threshold of 1 are not suitable because they are overcompen-
sating all insurers and increasing the health system’s expenditures. By guaranteeing the
full sample predictive ratio is less than or equal to one we are focusing on more efficient
redistributions of the current level of health expenditure. The best model in this table
is the boosted trees model that is fitted over the set of variables chosen through feature
selection (GMB FS), which reaches an annualized predictive ratio of 1.002, a MAE of
721,168 pesos, a RMSE of 3,431,044 pesos and a R2 of 5.77% that outperforms the linear
models fitted over the entire set of regressors7. These results are also consistent with
findings in [7] who mention that the boosting algorithm is able to explain almost 90% of
the variance in individual health costs for the Medicare Prospective Payment System.

Table 3 shows the out-of-sample fitting metrics in the highest quintile of the observed
expenditure distribution. Underestimation in this case increases the insolvency risk of
those insurers with the sickest population of enrollees. Therefore, the criteria to choose
the best model will be the one that achieves the closest to 1 predictive ratio. The neural
network model that includes the probability of claiming a service and the hospitalization
indicator predicts 53% of the non annualized health expenditure and 45% of the annualized

7Although for the lower quintile of the observed expenditure distribution in 2011 all the models highly
overestimate the annual health expenditure.
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health expenditure in this tail of the distribution. These percentages represent an improve
of 7 percentage points compared to the linear models. The GBM FS model fitted on a
much smaller set of variables is able to predict 50% of total health expenditures which
represents an improve of 5 percentage points relative to the government’s formula. Results
in this table suggest the current government formula (WLS UPC) is little predictive of the
annual health expenditure at the upper tail of the expenditure distribution, only 33.5%.
Results also show the ex ante morbidity risk adjustment using the 29 long-term disease
groups improves by 10 percentage points the government’s formula predictive ratios.

Table 3: Out-of-sample fitting metrics in the upper quintile of the expenditure distribution
Parameters Model RMSE MAE PR PR

annualized non annualized

WLS UPC 7,749,235 1,920,486 0.291 0.335

WLS UPC + Dx 7,580,659 1,983,269 0.367 0.426

WLS UPC + Dx + H 7,569,594 1,974,414 0.380 0.440

WLS UPC + Dx + H + E 7,565,491 1,963,559 0.388 0.450

WLS UPC + Dx + H + E + U 7,555,009 1,965,934 0.390 0.452

WLS UPC x H x E x U + Dx 7,555,760 1,981,378 0.393 0.456

5 + 0.05 ANN Demog + Dx (Two stages) 7,576,299 2,045,276 0.444 0.517

5 + 0.05 ANN Demog + Dx + H (Two stages) 7,558,045 2,000,360 0.454 0.526

5 + 0.05 ANN FS 7,582,293 1,962,318 0.412 0.474

680 RF Demog + Dx + H + E + U (Two stages) 7,780,452 2,118,572 0.445 0.520

680 RF FS 7,580,672 1,988,824 0.424 0.490

680 + 3 + 0.1 + 50 GBM Demog + Dx + H + E + U (Two stages) 7,532,498 1,988,610 0.436 0.505

680 + 3 + 0.1 + 50 GBM FS 7,517,520 1,961,026 0.430 0.500

Note: This table shows the RMSE, MAE and annualized and non-annualized predictive ratios in the upper quintile of the

observed annual health expenditure distribution for 2011. The models and their parameters as the same as in table (2).

Authors’ calculations from the Base de Suficiencia.

Variable relative importance measures (an average of how many times is a variable
used for the recursive partitioning of the trees) from the GBM FS model (not shown)
show that the most relevant predictors are in order: the probability of claiming a service,
the indicator of consults with specialist, the indicator of hospitalizations, the 45 to 49
age group, and the indicator of urban areas. In relation to diagnoses categories, the most
predictive groups are: cardiovascular diseases, cervical cancer, hypertension and breast
cancer.

4.1 Incentives to risk selection

Overestimation of the annual health expenditure of enrollees in the lower tail of the
observed expenditure distribution generates incentives to risk selection because insurers
will tend to enroll only those individuals whose health expenditure is low but whose
prediction, on which per capita payments are based, is high. In this subsection we study the
incentive to risk selection by comparing the profit generated by those enrollees for which
the models overestimate the annual health expenditure. Table 4 shows the percentage of
enrollees for which the prediction of annual health expenditure is higher than the observed
expenditure ((1/N)

∑N
i=1wiI(ŷi > yi)) and the profit they would generate (

∑N
i=1wi(ŷi −

yi)). In terms of these results, a model is desirable if: (i) the percentage of enrollees and
the percentage of profit with respect to income is similar and (ii) the absolute level of
profit is low compared to the rest of the models.

Linear models generate the lowest profits due to risk selection compared to the rest
of the models. However, the government’s formula is dominated by the linear models
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that adjust ex ante for the morbidity distribution of the population of enrollees. The
linear model with indicators of long-term diseases, hospitalization, consult with specialist,
and admission to the intensive care unit, generates 172,051 million pesos of profit by
enrolling individuals for which they overestimate the annual health expenditure. In this
model, there is 5 percentage point difference between the percentage of enrollees and the
percentage of profits, which is larger than what machine learning based models achieve.
The boosted trees model fitted over the entire set of predictors overestimates the annual
health expenditure for 70% of the population of enrollees, but this percentage of individuals
is responsible for 73% of the system’s profits.

Table 4: Incentives to risk selection
Parameters Model Enrollees (%) Profit ($)* Profit (%)

WLS UPC 70.39 180,046 73.39

WLS UPC + Dx 67.82 173,432 72.32

WLS UPC + Dx + H 65.66 173,464 72.29

WLS UPC + Dx + H + E 64.02 172,739 71.93

WLS UPC + Dx + H + E + U 64.50 172,051 71.92

WLS UPC x H x E x U + Dx 67.52 175,454 71.55

5 + 0.05 ANN Demog + Dx (Two stages) 57.96 234,627 76.19

5 + 0.05 ANN Demog + Dx + H (Two stages) 60.15 224,829 74.62

5 + 0.05 ANN FS 57.01 251,677 76.68

680 RF Demog + Dx + H + E + U (Two stages) 67.85 198,359 73.97

680 RF FS 69.77 191,198 72.33

680 + 3 + 0.1 + 50 GBM Demog + Dx + H + E + U (Two stages) 70.53 196,517 72.38

680 + 3 + 0.1 + 50 GBM FS 70.21 197,569 72.58

Note: This table shows the percentage of enrollees for which models overestimate the annual health expenditure

(1/N)
∑N

i=1 wiI(ŷi > yi), the profit they would generate
∑N

i=1 wi(ŷi − yi), and the profit as percentage of income.

Authors’ calculations from the Base de Suficiencia.

5 Conclusions

We show the current risk adjustment formula that conditions on sociodemographic
factors and their interactions, can only predict 30% of total health expenditures in the
upper quintile of the expenditure distribution. We show the government’s formula can
improve significantly by conditioning ex ante for any measure of the morbidity distribution
of enrollees such as the indicators of 29 long-term diseases, going from a 30% to a 40%
prediction of total annual health expenditure in the upper tail of the distribution. Our
main finding is that non parametric models based on machine learning techniques like
the boosted trees model, outperforms by 5 percentage points the predictive ratio, by
40,000 pesos the RMSE and by 20,000 the MAE in the last quintile of the expenditure
distribution, compared to the government’s formula. This document evidences how the
risk adjustment policy in Colombia can redistribute resources more efficiently by adjusting
for the enrollees’ health condition ex ante and by using non parametric specifications that
capture the non linear relation between risk factors better than the linear models.
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