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1 Introduction
Cross-cutting or factorial designs are widely used in field experiments. For example, 27 out of 124

field experiments published in top-5 economics journals during 2007–2017 use cross-cutting designs.

One rationale is that the power for detecting main treatment effects is higher if interactions between

treatments are ignored in estimation and inference (with the implicit assumption that interactions

are zero or negligible). This can make factorial designs a cost-effective way of studying multiple

treatments.1 A second rationale is to “explore” if there are meaningful interactions across treatments.

This paper is motivated by the observation that both of these rationales can be problematic in practice.

To fix ideas, consider a setup with two randomly-assigned binary treatments. The researcher

can estimate either a fully-saturated “long” model (with dummies for both treatments and their

interaction) or a “short” model (only including dummies for both treatments). The long model

yields consistent estimators for the main treatment effects of both treatments and is always correct

for inference regardless of the true value of the interaction effect. However, if the true value of the

interaction effect is zero, the short model yields consistent estimators and has greater power for

conducting inference on the main effects.

The power gains from the short model, however, come at the cost of an increased likelihood of

incorrect inference relative to a business-as-usual counterfactual (defined as outcomes in a pure

experimental control group) if the interaction effect is not zero. Out of 27 field experiments published

in top-5 economics journals during 2007–2017 using cross-cutting designs, 19 (over 70%) do not

include all interaction terms in the main specifications. We reanalyzed the data from these papers by

also including the interaction terms.2 Doing so has non-trivial implications for inference on the main

treatment effects. The median absolute value of the change in the point estimates is 96%, about
1As Kremer (2003) puts it: “Conducting a series of evaluations in the same area allows

substantial cost savings...Since data collection is the most costly element of these evaluations,

cross-cutting the sample reduces costs dramatically...This tactic can be problematic, however,

if there are significant interactions between programs”.
2The full list of 27 papers is in Table A.1. We reanalyzed 15 out of the 19 that do not

include all interactions in the main specification. The other four papers did not have publicly-

accessible data.
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26% of estimates change sign, and 53% (29 out of 55) of estimates reported to be significant at the

5% level are no longer so after including interactions. Even if we reanalyze only “policy” experiments,

32% of the estimates (6 out of 19) are no longer significant after including interactions.3

In practice, researchers often estimate the long model first and test if the interaction is significant,

and then focus on the short model if they do not reject that the interaction is zero. However, such

data-dependent model selection leads to invalid inferences (Leeb & Pötscher, 2005, 2006, 2008;

Kahan, 2013) and should thus be avoided. Further, cross-cutting experiments are rarely adequately

powered to detect meaningful interactions (see Section 2.6). Thus, this two-step procedure will

almost always fail to reject that the interaction term is zero, even when it is different from zero. As

a result, the rate of incorrect inference using this two-step model-selection procedure will continue

to be nearly as high as that from just running the short model.

The lack of power to detect interactions combined with a focus on statistical significance also

makes it challenging to use factorial designs to “explore” whether interactions are meaningful. The

interaction estimator’s variance is always larger than that of the main effects estimators, making

the sample size requirements for detecting interactions much more onerous.4 This leads to most

factorial experiments being under-powered to detect interactions. As a result, point estimates of

interactions will on average substantially overstate the true effect, conditional on being significant.

This problem has been referred to by Gelman & Carlin (2014) as Type-M error.

Textbook treatments of factorial designs (Cochran & Cox, 1957; Gerber & Green, 2012) and

guides to practice (Kremer, 2003; Duflo et al., 2007) are careful to clarify that treatment effects

using the short model should be interpreted as either (a) being conditional on the distribution of

the other treatment arms in the experiment, or (b) as a composite treatment effect that includes

a weighted-average of the interactions with other treatments. However, as we argue in Section
3We define a policy experiment as one which studies a program or intervention that could

be scaled up; as opposed to a conceptual experiment, which aims to test for the existence of

facts or concepts such as discrimination (e.g., resume audit experiments).
4For example, one would need an 8 times larger sample to detect an interaction than to

detect a main effect when the interaction is half the size of the main effect; see Section 2.6 and

Appendix A.3.
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2.3, this weighted average is a somewhat arbitrary construct, can be difficult to interpret in high-

dimensional factorial designs, and is typically neither of primary academic interest nor policy-relevant.

Consistent with this view, none of the 19 experimental papers that focus on the short model

motivate their experiment as being about estimating a weighted-average treatment effect.

The status quo of focusing on the short model is problematic for at least three reasons. First,

ignoring interactions affects internal validity against a “business-as-usual” counterfactual. If the

interventions studied are new, the other programs may not even exist in the study population. Even

if they do, there is no reason to believe that the distributions in the population mirror those in the

experiment. Thus, to the extent that estimation and inference of treatment effects depend on what

other interventions are being studied in the same experiment, ignoring interactions is a threat to

internal validity.

Second, “absence of evidence” of significant interactions may be erroneously interpreted as

“evidence of absence”. The view that interactions are second-order (as implied when papers only

present the short model) may have been influenced partly by the lack of evidence of significant

interactions in most experiments to date. However, as we show in Section 2.6, this is at least

partly because few experiments are adequately powered to detect meaningful interactions. There is

now both experimental (Duflo et al., 2015; Mbiti et al., 2019) and non-experimental (Kerwin &

Thornton, 2021; Gilligan et al., 2022) evidence that interactions matter. Indeed, a long tradition in

development economics has highlighted the importance of complementarities across programs in

alleviating poverty traps (Ray, 1998; Banerjee & Duflo, 2005), which suggests that assuming away

interactions in empirical work may be a mistake.

Third, there is well-documented publication bias towards significant findings (e.g., Franco et al.,

2014; Andrews & Kasy, 2018; Christensen & Miguel, 2018; Abadie, 2020). This can also affect

evidence aggregation because meta-analyses and evidence reviews often only include published

studies. Thus, the sensitivity of the significance of main effect estimates to the inclusion/exclusion

of interaction terms (which we document in this paper), is likely to have non-trivial implications for

how evidence is published, summarized, and translated into policy.

Having documented the limitations of the short model, we consider if it is possible to improve

power relative to the long model while maintaining size control for relevant values of the interactions.
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The two-sided long model t-test is the uniformly most powerful unbiased test (e.g., van der Vaart,

1998; Elliott et al., 2015a). This result implies that if one insists on size control for all values

of the interaction effect, any procedure that is more powerful than the t-test for some values of

the interactions must have lower power somewhere else. This classical result motivates imposing

restrictions on the interaction effects based on prior knowledge to improve power. We explore three

different approaches.5

The first approach, based on Elliott et al. (2015a), is a nearly optimal test that targets power

towards an a priori likely value of the interaction (e.g., a value of zero), while controlling size for

all values of the interaction. This approach comes close to achieving the maximal theoretically

possible power near the likely value of the interaction but exhibits lower power than the long model

t-test farther away. We then consider two approaches based on Armstrong et al. (2020) and Imbens

& Manski (2004) for constructing confidence intervals for the main effects under restrictions on

the magnitude of the interactions based on prior knowledge. When the prior knowledge is correct,

these approaches control size and yield substantial power gains relative to the long model t-tests.

However, these power gains come at the cost of size distortions if the prior knowledge is incorrect.

Based on the analysis above, we recommend — in the interest of transparency — that factorial

experiments report results from the long regression model (even if only in an appendix). Long model

t-tests are easy to compute even in complicated factorial designs and have appealing optimality

properties. Further, the justification for omitting interactions should not be that these were not

significant in the long model (because of the model selection issue discussed above). Rather, if

researchers would like to focus on results from the short model, they should clearly indicate that

treatment effects should be interpreted as composite effects that include a weighted-average of

interactions with other treatments (and specify the estimand of interest in a pre-analysis plan).

This will enable readers to assess the extent to which other treatments may be typical background

factors that can be ignored.

For the design of new experiments, if the primary parameters of interest are the main effects,

a natural alternative is to leave the “interaction cells” empty and increase the number of units
5In Appendix A.6, we explore a fourth approach based on McCloskey (2017, 2020), which

is based on a Bonferroni-type correction after consistent model selection.
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assigned to the main treatment(s) or the control group. Our simulations show that this design-

based approach yields more power gains than the econometric methods discussed above for most of

the relevant values of the interaction.

Reviewing classic texts on experimental design, we identify four cases where factorial designs

and analyses of the short model may be appropriate. The first is where the goal is to explore several

treatments efficiently to identify promising interventions for further testing (e.g., Cochran & Cox,

1957). However, most policy experiments are run only once, making factorial designs and short

model estimates less desirable.

The second is when the goal is not to test whether a given treatment has a “significant” effect,

but to minimize mean squared error (MSE) criteria (or other loss functions) involving a bias-variance

trade-off in estimating the main effects (e.g., Blair et al., 2019). However, a key rationale for

experimental evaluations of policies and programs is to generate unbiased estimates, making the

bias in the short model unattractive.

The third is to improve external validity. Cochran & Cox (1957, p.152) recommend bringing in

subsidiary factors into factorial designs to test main effects over a wide range of conditions; also

see Fisher (1992). Thus, factorial designs and analyses of the short model may be fine when one

dimension of the experiment is studying reasonable variants of the main treatment, but less so when

all treatments are of primary interest.

The fourth is the case of conceptual (as opposed to policy) experiments, such as resume audit

studies, where many of the characteristics that are randomized (such as age, education, race, and

gender) do exist in the population. When feasible, we recommend having the treatment share of

various characteristics being studied be the same as their population proportion. Doing so will make

the short-model coefficient more likely to approximate a population relevant parameter of interest.

We discuss each of these four rationales along with relevant examples in Section 5.

Our first contribution is to the literature on the design of field experiments. Bruhn & McKenzie

(2009), List et al. (2011), and Athey & Imbens (2017) provide guidance on the design of field

experiments, but do not discuss when and when not to implement factorial designs. Duflo et al.

(2007, p.3932) implicitly endorse the use of factorial designs by noting that they “[have] proved very

important in allowing for the recent wave of randomized evaluations in development economics”.
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Our reanalysis of existing experiments as well as simulations suggest that there is no free lunch.

The perceived gains in power and cost-effectiveness from factorial designs come at the cost of not

controlling size and an increased rate of false positives relative to a business-as-usual counterfactual.

Alternatively, they come at the cost of a more complicated interpretation of the main results as a

weighted-average of interactions with other treatments that may not represent a typical counterfactual.

Further, using under-powered factorial designs to explore whether interactions are significant comes

at the risk of overestimating the true effect, conditional on rejecting the null of no effect.

We also contribute to the literature that aims to improve the analysis of field experiments (e.g.,

Young, 2018; List et al., 2019). Our paper follows in this tradition by documenting a problem with

the status quo, quantifying its importance, and identifying the most relevant recent advances in

theoretical econometrics that can mitigate the problem. Specifically, we show that the econometric

analysis of nonstandard inference problems can improve inference in factorial designs which are

ubiquitous in field experiments.

Finally, we contribute to the literature on the pitfalls of focusing on statistical significance

in applied work (e.g., Brodeur et al., 2016; Wasserstein & Lazar, 2016; Amrhein et al., 2019;

Wasserstein et al., 2019; Brodeur et al., 2020). Specifically, the problems we highlight in this paper

are less due to factorial designs per se. Rather they stem from the combination of a focus on

statistical significance to assess if effects are meaningful, and most factorial experiments being

under-powered to detect interactions.

2 Factorial designs in theory

2.1 Setup
This section discusses theoretical aspects of experiments with factorial (or “cross-cut”) designs. We

focus on factorial designs with two treatments, T1 and T2, (“2×2 designs”), where researchers

randomly assign some subjects to receive treatment T1, some subject to receive treatment T2, and

some subjects to receive both treatments (see Table 1). The analysis straightforwardly extends to

cross-cut designs with more than two treatments.

[Table 1 about here.]
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We are interested in the causal effect of T1 and T2 on an outcome Y . We use the potential

outcomes framework (Rubin, 1974). The potential outcomes {Yt1,t2} are indexed by both treatments,

T1 = t1 and T2 = t2, and are related to the observed outcome as Y =∑
t1∈{0,1}

∑
t2∈{0,1}1(T1 =

t1,T2 =t2)·Yt1,t2. We assume that both treatments are randomly assigned and independent of each

other, which is common in practice (e.g., Olken, 2007; Bertrand et al., 2010).

2.2 Long and short regression models
Researchers analyzing experiments based on cross-cut designs typically consider one of the following

two population regression models:

Long (or fully saturated) model:

Y =β0+β1T1+β2T2+β12T1T2+ε (1)

Short model:

Y =βs
0+βs

1T1+βs
2T2+εs (2)

The long model (1) includes both treatment indicators as well as their interaction, while the short

model (2) only includes the two treatment indicators.6

The population regression coefficients in the long regression model correspond to the main

average treatment effects (ATEs) of T1 and T2 against a business-as-usual counterfactual (this

counterfactual can also be interpreted as the outcomes in a pure experimental control group) and

the interaction effect:

β1 = E(Y1,0−Y0,0) (ATE of T1 relative to a counterfactual where T2 =0) (3)

β2 = E(Y0,1−Y0,0) (ATE of T2 relative to a counterfactual where T1 =0) (4)

β12 = E(Y1,1−Y0,1−Y1,0+Y0,0) (interaction effect)7 (5)
6Following Angrist & Pischke (2009, Chapter 3) and Hansen (2022, Chapter 2), we interpret

β =(β0,β1,β2,β3)′ =E(XX ′)−1E(XY ), where X =(1,T1,T2,T12)′, as the population regression

coefficient (or linear projection coefficient) and ε = Y − X′β as the population residual

(or projection error). Similarly, we interpret βs = (βs
0,βs

1,βs
2)′ = E(XX ′)−1E(XY ), where

Xs =(1,T1,T2)′, and εs =Y −Xsβs as the population regression coefficient and the population

residual, respectively.
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By contrast, the regression coefficients in the short model are

βs
1 = E(Y1,1−Y0,1)P(T2 =1)+E(Y1,0−Y0,0)P(T2 =0) (6)

= E(Y1,0−Y0,0)+E(Y1,1−Y0,1−Y1,0+Y0,0)P(T2 =1) (7)

βs
2 = E(Y1,1−Y1,0)P(T1 =1)+E(Y0,1−Y0,0)P(T1 =0) (8)

= E(Y0,1−Y0,0)+E(Y1,1−Y0,1−Y1,0+Y0,0)P(T1 =1) (9)

Equation (6) shows that βs
1 yields a weighted average of the ATE of T1 relative to a counterfactual

where T2 =1 and the ATE of T1 relative to a business-as-usual counterfactual where T2 =0. The

weights, P(T2 =1) and P(T2 =0), are determined by the experimental design. Alternatively, βs
1 can

be written as the sum of the ATE of T1 relative to the T2 =0 counterfactual and the interaction effect

multiplied by P(T2 =1) (Equation (7)). Equations (8) and (9) present the corresponding expressions

for βs
2. Unless the interaction effect is zero, βs

1 and βs
2 do not correspond to the main effects but yield

composite treatment effects that are weighted averages of ATEs relative to different counterfactuals.

Remark 1. The problem of choosing between the long model and the short model is not unique

to factorial designs and arises in many contexts. For example, when estimating treatment

effects in observational studies, researchers need to decide whether to include the covariates

linearly or consider fully interacted specifications (e.g., Angrist & Krueger, 1999; Angrist &

Pischke, 2009). However, the practical implications are not the same because experimental

treatments are fundamentally different in nature from standard covariates, as we discuss below

in Section 2.3. The choice between the short and the long model (with interactions between

the treatment and strata indicators) is also relevant in stratified experiments (e.g., Imbens &

Rubin, 2015; Ansel et al., 2018; Bugni et al., 2018, 2019).

2.3 Long or short model: What do we care about?
Section 2.2 shows that the short model yields a weighted average of treatment effects that depends

on the nature and distribution of the other treatment arms in the experiment. This weighted

average is typically neither of primary academic interest nor policy-relevant. This view is consistent

with how papers we reanalyze motivate their object of interest, which is usually the main treatment
7The interaction effect is the difference between the effect of jointly providing both treatments

and the sum of the main effects.
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effect against a business-as-usual counterfactual. Of the 19 papers in Table A.1 in Appendix A.1

that present results from the short model without all interactions, we did not find any study that

mentioned (in the main text or a footnote) that the presented treatment effects should be interpreted

as either (a) a composite effect that includes a weighted average of the interaction with the other

treatments or (b) as being against a counterfactual that was not business-as-usual but one that

also had the other treatments in the same experiment.

One way to make the case for the short model is to recast the problem we identify as one

of external rather than internal validity. Specifically, all experiments are carried out in a context

with several unobserved “background” covariates. Thus, any experimental treatment effect is a

weighted average of effects conditional on unobserved covariates. If the other experimental arms are

considered analogous to unobserved background covariates, inference on treatment effects based on

the short model can be considered internally valid. In this view, the challenge is that the unobserved

covariates (including other treatment arms) will vary across contexts.

However, experimental treatments are fundamentally different from standard background

covariates. They are determined by the experimenter based on research interest, and rarely represent

real-world counterfactuals. In some cases, the interventions studied are new and the other treatments

may not even exist in the study population. Even if they do exist, there is no reason to believe

that the distributions in the population mirror those in the experiment. Thus, we view this issue

as a challenge to internal validity. Further, papers with factorial designs often use the two-step

procedure described in Section 2.5, and present results from the short model after mentioning that

the interactions are not significantly different from zero (e.g., Banerjee et al., 2007; Karlan & List,

2007). This suggests that our view that interactions matter for internal validity is shared broadly.

Finally, even in settings where the coefficients in the short model are of interest, they can always be

constructed based on the coefficients in the long model, while the converse is not true. One can also

use the long model to test hypotheses about the coefficients in the short regression model: H0 :βs
1 =

β1+β12P(T2 =1)=0. Which test is more powerful depends on the relative sample size in the four

experimental cells.8 Unlike the short model, the long model additionally allows for testing a rich variety
8In practice, we recommend comparing both tests when doing power calculations. If both

tests have the same power, the short model is more straightforward.
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of hypotheses about counterfactual effects such as H0 :β1+β12p=0 for policy-relevant values of p,

which generally differ from the experimental assignment probability P(T2 =1). For instance, resume

audit experiments may vary characteristics such as age, gender, race, education, and experience with

the sample size allocated to various combinations of these characteristics being different from their

proportion in the population. In such a case, short model estimates are difficult to interpret, whereas

estimating the long model and calculating a weighted average of main and interaction effects with

weights equal to their population proportions may yield a more policy-relevant treatment effect.

To summarize, the long model estimates all the underlying parameters of interest (the main

effects and the interactions). In contrast, βs
1 is rarely of interest in its own right, and even if it is,

the long model allows for estimation and inference on βs
1 as well.

2.4 Inference on main effects
Suppose that the researcher has access to a random sample {Yi,T1i,T2i}N

i=1. Consider the problem

of testing hypotheses about the main effect of T1 relative to a business-as-usual counterfactual:

H0 :β1 =E(Y1,0−Y0,0)=0.

To illustrate, suppose the data generating process is given by

Yi =β0+β1T1i+β2T2i+β12T1iT2i+εi, εi ∼N(0,σ2), (10)

where εi is independent of (T1i, T2i) and σ2 is known. If the interaction effect β12 is zero,

conditional on {T1i,T2i}N
i=1, β̂1 ∼N

(
β1,V ar

(
β̂1
))

and β̂s
1 ∼N

(
β1,V ar

(
β̂s

1

))
, where V ar

(
β̂1
)

=

σ2
(

1
N1

+ 1
N2

)
≥ V ar

(
β̂s

1

)
=σ2

(
N1N3+N1N4+N2N3+N2N4

N1N2N3+N1N2N4+N1N3N4+N2N3N4

)
. As a result, the short model t-

test exhibits higher power than the long model t-test.

If, on the other hand, β12≠0, ignoring the interaction can lead to substantial size distortions.

To illustrate, we introduce a simple running example. Consider a 2×2 design with a total sample

size of N = 1,000 and N1 = N2 = N3 = N4 = 250. The data are generated based on Model

(10) with εi ∼ N(0,1), T1i and T2i randomly assigned and independent of each other, and

P(T1i =1)=P(T2i =1)=0.5. This design has power 90% to detect an effect of 0.2σ (0.29σ) at

the 5% level using the short model (long model).

Figure 1 shows how power, bias, and size vary across different values of β12 in both the long and

the short model. When β12 =0, the short model t-test controls size and exhibits higher power than

the long model t-test as discussed before. However, these power gains come at the cost of bias and
10



size distortions whenever β12≠0. Importantly, even modest values of |β12| lead to considerable size

distortions. For instance, |β12|>0.1σ more than doubles the rate of false rejection of the null (in

the data we reanalyze in Section 3.2, we find that |β̂12|>0.1σ in over 36% of cases). By contrast,

the long model is unbiased and exhibits correct size for all values β12. The main takeaway from

Figure 1 is that researchers should avoid the short model for making inference on the main effects,

unless they are certain that β12 =0.

[Figure 1 about here.]

2.5 Model selection (or pre-testing) yields invalid inferences
Researchers often recognize that using the short model is only correct for inference on the main

treatment effect if the interaction is close to zero (as implied by the quote from Kremer (2003) in

the introduction). However, the problem is that the value of the interaction is unknown ex ante.

Therefore, a common practice is to employ a data-driven two-step procedure to determine whether

to ignore the interaction:

1. Estimate the long model and test the null hypothesis that β12 is zero (i.e., H0 :β12 =0) using

a two-sided t-test.

2. (a) If H0 :β12 =0 is rejected, test H0 : β1 =0 using the long model t-test.

(b) If H0 :β12 =0 is not rejected, test H0 :β1 =0 using the short model t-test.

While seemingly attractive, such data-dependent model selection leads to invalid inferences (e.g.,

Leeb & Pötscher, 2005, 2006, 2008; Kahan, 2013). Figure 2 shows the size properties of the two-

step model selection approach in our running example. For reference, we also include results for the

short and long model t-tests. The main takeaway from Figure 2 is that model selection leads to

incorrect inferences and false positives for a wide range of values of β12.9 Model selection can be

particularly problematic for program evaluation field experiments because they are expensive to run,

and therefore typically not adequately powered to reject that the interactions are zero (Section 2.6).

The range of values for |β12| for which model selection leads to substantial size distortions

shrinks as the sample size (and power) of the experiment increases. However, it can be quite large
9This is true even when β12 =0 (as seen in the blue line in Figure 2) because the tests in

the first and second step are not independent.
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in realistic settings. In our running example, with 1,000 observations one would need |β12| to be

above 0.5 to avoid notable size distortions. Even with 10,000 observations, only values of |β12|

above 0.2 lead to negligible size distortions (see Figure A.13). Since the true value of the interaction

is unknown and likely to be in this “problematic range” in many practical settings (see Figure 3),

we recommend that researchers avoid the data-driven model-selection approach.

[Figure 2 about here.]

Remark 2. As Figure 2 shows, model selection is less of a concern when the interactions are

either zero or very large, but is a first-order issue when interactions are in the problematic

range noted above. This issue is relevant in many settings. For instance, Banerjee et al. (2021)

have proposed a LASSO-based method for selecting and making inferences on the most effective

combination of treatments. However, they do so by imposing the restriction that “[treatments

and their interactions] have either no effect or have sufficiently large (positive or negative)

influence on the outcomes”.10 In other words, they avoid the problem noted above by assuming

that the interactions are outside the “problematic range” in Figure 2. While their goal differs

from ours (making inferences on the best treatment combination vs. making inferences on main

and interaction effects), this example illustrates the continued prevalence of model selection in

the analysis of field experiments.

2.6 Inference on interaction effects
An alternative motivation for factorial designs is to learn about interactions and jointly explore the

parameter space of main and interaction effects.

However, detecting interaction effects requires much larger sample sizes than needed for detect-

ing main effects. To illustrate, we compare the standard errors of the OLS estimator of the interac-

tion effect, β̂12, and the main effect, β̂1. Under the assumptions in Section 2.4, the standard errors

are SE
(
β̂1
)

=σ
√

1
N1

+ 1
N2

and SE
(
β̂12
)

=σ
√

1
N1

+ 1
N2

+ 1
N3

+ 1
N4

. Since SE
(
β̂1
)

<SE
(
β̂12
)
, the

power for detecting interaction effects is always lower than the power for detecting main effects, and

the required sample size for detecting interaction effects is always larger than the required sample

size for detecting main effects of equal magnitude. For example, we need eight times the sample
10See their Assumption 3 and footnote 11 for a formal statement.
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size to have the same power to detect an interaction effect as to detect the main effect, when the

interaction is half the size of the main effect (see Appendix A.3). Given the more onerous sample

size requirements to detect interactions relative to main effects, it is not surprising that only few

of the interaction effects are significant in the reanalysis in Section 3.2.1.

Further, even when interactions estimates are significant, they can be misleading because sig-

nificant results in under-powered studies are much more likely to reflect an outlier estimate of the

interaction. In particular, low power is associated with a high Type-M error (or exaggeration ratio)

(Gelman & Carlin, 2014). The Type-M error is the expectation of the absolute value of the esti-

mator in a hypothetical replication study based on the same design as the original study, conditional

on being significant, divided by the true effect (see p.643 and Figure 1 in Gelman & Carlin, 2014).

For example, if the experiment has 80% power to detect treatment effects of 0.2σ or larger at the

5% level using the long model and the true value of the interaction is 0.1σ, then the Type-M error

for β̂12 is ∼251%. That is, the estimator of the interaction would, on average, be over two times

larger than the true value, conditional on being significant. Figure A.9 in Appendix A.3 shows the

relationship between the Type-M error and the power of the experiment.

Note that using the long model to estimate and learn about interactions is fine since the long

model estimator is always consistent and asymptotically normal, even if noisy in finite samples. The

problem we document here arises because of the focus on statistical significance to assess whether

a result is meaningful. Combined with the well-documented publication bias towards significant

results (e.g., Franco et al., 2014; Andrews & Kasy, 2018; Christensen & Miguel, 2018; Abadie,

2020), the discussion above suggests that published results from under-powered studies are likely to

meaningfully exaggerate the true effect. Following Gelman & Carlin (2014), we suggest studies

report power to detect interactions (as well as Type-M errors) in their pre-analysis plan.

3 Factorial designs in practice
In this section we document common practices among researchers studying field experiments with

factorial designs.
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3.1 Data and descriptive statistics
We analyze all articles published between 2007 and 2017 in the top five journals in Economics.11 Of

the 3,505 articles published in this period, 124 (3.5%) are field experiments (Table A.6 provides

more details). Factorial designs are widely used: Among 124 field experiments 27 (22%) had a

factorial design.12 Only 8 of these 27 articles with factorial designs (∼30%) used the long model

including all interaction terms as their main specification (see Table 2).

[Table 2 about here.]

3.2 Ignoring interactions in practice
In Section 2.4, we have shown that ignoring interactions can lead to substantial size distortions and

false positives. Here, we examine the practical implications of ignoring the interactions in the papers

listed in Table A.1. We reanalyze the data from all field experiments with factorial designs and

publicly available data that do not include all the interactions in the main specification.13 Of the ten

most-cited papers with factorial designs listed in Table A.1, only one includes all the interactions in

the main specification. More recent papers (which are less likely to be among the most cited) are

more likely to include all interaction terms. Out of the 27 papers with factorial designs published in
11These journals are The American Economic Review, Econometrica, The Journal of Political

Economy, The Quarterly Journal of Economics, and The Review of Economic Studies. We

exclude the May issue of the American Economic Review, known as “AER: Papers and

Proceedings”.
12We do not consider two-stage randomization designs as factorial designs. A two-stage

randomization design is where some treatment is randomly assigned in one stage. In the

second stage, treatment status is re-randomized to study behavioral changes conditional on

a realization of the previous treatment. Examples of studies with two-stage randomization

designs include Karlan & Zinman (2009), Ashraf et al. (2010), and Cohen & Dupas (2010).

Finally, we do not include experiments where there is no “treatment”, but rather conditions

are randomized to elicit individuals preference parameters (e.g., Andersen et al., 2008; Fisman

et al., 2008; Gneezy et al., 2009).
13We also reanalyze the effect of not including the interaction in the studies that do include

all the interactions in their main specification in Appendix A.1.4.
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top-5 journals, 19 papers do not include all interaction terms (over 70%).14 Of these 19, 4 papers

did not have publicly-available replication data. In an online appendix we describe the experimental

design of each of the 27 papers and provide details on our replication analysis.15

We downloaded the publicly-available data files and replicated the main results in each of the

remaining 15 papers. We standardized the outcome variable in each paper to have mean zero and

standard deviation of one. We then compared the original treatment effects (estimated without the

interaction terms) with those estimated including the interaction terms.16 In other words, we compare

estimates based on the short model (Equation (2)) to those based on the long model (Equation (1)).

3.2.1 Key facts about interactions

As the discussion in Section 2.4 highlights, the extent to which the short model will not control size

depends on the value of the interactions in practice. We therefore start by plotting the distribution

of estimated interaction effects (Figure 3) and documenting facts regarding interactions from our

reanalysis. We find that interactions are quantitatively important and typically not second-order.

All estimates are measured in standard deviations (σ) of the outcome variable. While the median

(mean) interaction for these papers is 0.00σ (0.00σ), the median (mean) absolute value of the

interaction is 0.07σ (0.13σ). The median (mean) absolute value of interactions relative to the main

treatment effects is 0.37 (1.55). Thus, while it may be true that interactions are small on average

across all studies, they are often sizeable in any given study. In our data, the absolute value of

the interactions is greater than 0.1σ in 36% and greater than 0.2σ in 19% of the cases. These

magnitudes lead to a 12% and 35% chance of rejecting the null of no effect in our running example

(as seen in Figure 1), which corresponds to more than a doubling and a sextupling, respectively, in

the rate of false rejections at the 5% level.

The second key finding is that most experiments will rarely reject the null hypothesis that the

interactions are zero (Figure 3 shades the fraction of the interactions that are significant in the
14While we restrict our reanalysis to papers published in “top five” journals, factorial designs

are also prevalent in papers published in lower-ranked journals. Hence, the total number of

articles focusing on the short model published in this period is likely much larger.
15Available at http://mauricio-romero.com/pdfs/papers/Appendix_crosscuts.pdf
16If studies have factorial designs that cross-randomize more than two treatments, we only

include two-way interactions in this calculation.
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studies that we reanalyze). Among the 15 papers that we reanalyzed, 6.2% of interactions (spread

across 4 papers) are significant at the 10% level, 3.6% are significant at the 5% level (spread across

3 papers), and 0.9% are significant at the 1% level (in 1 paper).17 These findings are not surprising

because factorial designs are rarely powered to detect meaningful interactions.

The fact that most experiments were not explicitly powered to detect interactions suggests that

the main reason for running experiments with factorial designs seems to be the increase in power

for detecting main effects. However, as we show below, this comes at the considerable cost of

an increased rate of false positives (which is unsurprising based on the distribution of interactions

shown in Figure 3).

[Figure 3 about here.]

3.2.2 Ignoring interactions has important implications for estimation and inference

Figure 4a compares the original treatment effect estimates based on the short model to the estimates

based on the long model which includes the interaction terms (Figure 4b zooms in to cases where

the value of the main treatment effects in the short model is between -1 to 1 standard deviation).

The median change in the absolute value of the point estimate of the main treatment effect is 96%.

Roughly 26% of estimated treatment effects change sign when they are estimated using the long

regression.

Table 3 shows how the significance of the main treatment estimates changes when using the

long instead of the short model. About 48% of treatment estimates that were significant at the

10% level based on the short model are no longer significant based on the long model. 53% and

57% of estimates lose significance at the 5% and 1% levels, respectively. A much smaller fraction

of treatment effects that were not significant in the short model are significant based on the long

regression (6%, 5%, and 1%, at the 10%, 5%, and 1% levels, respectively).18

17Among the papers that originally included all interactions, 4.5% of interactions are

significant at the 10% level, 1.1% are significant at the 5% level, and 0.0% are significant at

the 1% level. See Appendix A.1.4 for more details.
18These results are not driven by just a few papers. If we first estimate the median change

in the absolute value of the estimate within each paper, and then the median change across
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We find similar results when we restrict our reanalysis to the ten most cited papers with factorial

designs that do not include the interaction terms (with data available for reanalysis). When we

re-estimate the treatment effects in these papers after including interactions, we find that out of

21 results that were significant at the 5% level in the paper, 9 (or 43%) are no longer so after

including interactions. Corresponding figures and tables are presented in Appendix A.1.2 (Figure

A.2 and Table A.2).

Finally, we also distinguish between policy and conceptual experiments in Table A.1 (the latter

typically have more treatments and interactions) and see that the problem of incorrect inference

from ignoring interaction terms remains even when we restrict attention to the policy experiments.

Of the 12 policy experiments, 9 do not include all interactions. When we re-estimate the treatment

effects in these 9 papers after including interactions, we find that out of 19 results that were

significant at the 5% level in the paper, 6 (or 32%) are no longer so after including interactions.

Corresponding figures and tables are presented in Appendix A.1.3 (Figure A.4 and Table A.3).19

[Figure 4 about here.]

[Table 3 about here.]

4 Improving power for detecting main effects
We now examine whether it is possible to improve power for detecting main effects relative to long

model t-tests, while maintaining size control for relevant values of the interactions. We consider
papers, the result is similar to estimating the median absolute changes across all estimates

at 97%. Likewise, if we first estimate the proportion of estimates that change sign within

each paper, and then estimate the average across papers the result is 25%, which is similar to

estimating the proportion of estimates that change sign. Finally, 73% of papers have at least

one estimate that is no longer significant at the 10% level when estimating the full model, 77%

have at least one estimate that is no longer significant at the 5% level, and 82% have at least

one estimate that is no longer significant at the 1% level.
19Among the papers that originally included all interactions, 23% of results that are significant

at the 5% level in the short model are not significant in the long model. See Appendix A.1.4

for more details.
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2×2 factorial designs and briefly comment on factorial designs with more than two treatments at

the end of each subsection. Throughout, we will focus on the main ideas underlying the different

econometric methods. Appendix A.4 provides detailed descriptions and implementation details.

4.1 Setup
We focus on β1 and partial out T2 and the constant, keeping the partialling-out implicit. Defining

T12 =T1T2, the regression model of interest is

Y =β1T1+β12T12+ε. (11)

Our goal is to test hypotheses about the main effect β1.

The two-sided long model t-test is the uniformly most powerful test among tests that are

unbiased for all values of the interaction effect (e.g., van der Vaart, 1998; Elliott et al., 2015a).20

This implies that any test that is more powerful than the long model t-test for some values of β12

must have lower power somewhere else. Thus, to achieve higher power than the long model t-test,

one has to choose which values of β12 to direct power to based on prior knowledge.

If one insists on size control for all β12, the scope for power improvements relative to the

long model t-test is theoretically limited.21 For example, at the 5%-level, the maximal theoretically

possible power improvement over the long model two-sided t-test is 12.5 percentage points. Section

4.2 proposes a nearly optimal test that comes close to achieving the maximal power gain at a priori

likely values of the interaction, while controlling size for all values of the interaction. In Appendix A.6,

we show that a Bonferroni-style correction after model selection leads to local power improvements

for a range of positive values of the interaction.

The limited scope for power improvements relative to the long model t-test motivates relaxing

the uniform size control requirement and imposing additional restrictions on β12. An extreme

example is the short model t-test, which can improve power relative to long model t-test by much

more than 12.5%, but only controls size under the restrictive assumption that β12 =0. In Section
20A test is unbiased if its power is larger than its size.
21This is because the one-sided long model t-tests are uniformly most powerful (e.g.,

Proposition 15.2 in van der Vaart, 1998) so that, for any β12, the maximal power is achieved

by a one-sided t-test (e.g., Armstrong & Kolesar, 2015, 2021). See Armstrong & Kolesar (2018)

for a discussion of the implications for confidence intervals.
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4.3, we explore an intermediate approach that restricts the magnitude of β12, which is often more

realistic than assuming that β12 is exactly equal to zero.

4.2 Nearly optimal tests targeting power towards a likely value β̄12

Suppose that a particular value β12 = β̄12 is a priori likely and that we want to find a test that

controls size for all values of β12 and is as powerful as possible when β12 = β̄12. For concreteness,

we focus on the case where β̄12 =0 and consider the testing problem

H0 : β1 =0, β12 ∈R against H1 : β1≠0, β12 =0. (12)

We use the numerical algorithm developed by Elliott et al. (2015a,b) to construct a nearly optimal

test for the testing problem (12).22 Elliott et al. (2015a) consider a setting where one is interested in

maximizing weighted average power. The best test in this setting is a Neyman-Pearson test based on

the least favorable distribution (LFD). Since the LFD is often difficult to compute analytically, Elliott

et al. (2015a) instead focus on an approximate LFD, which yields feasible and nearly optimal tests.

[Figure 5 about here.]

Figure 5 displays the results of applying the nearly optimal test in our running example. The test

controls size for all values of β12 and, by construction, is nearly optimal when β12 =0. For example,

when β1 = 0.2 the power of the nearly optimal test is 98.5% of the maximal possible power at

β12 =0 (implied by the corresponding uniformly most powerful one-sided t-test). A comparison with

the long model t-test shows that the nearly optimal test is more powerful when β12 is close to zero.

However, these power gains come at a cost. For certain values of β12, the power can be much

lower than that of the long model t-test. Appendix A.7.3 provides a comprehensive assessment of

the performance of the nearly optimal tests by plotting power curves for different values of β1.

Finally, the nearly optimal test of Elliott et al. (2015a) becomes computationally prohibitive

with many interactions (i.e., many nuisance parameters) and, thus, cannot be recommended for

complicated factorial designs. The Bonferroni approach of McCloskey (2017, 2020) discussed in

Appendix A.6 constitutes a possible alternative in such settings.
22Our code to implement this procedure for 2×2 factorial designs is available at https://

mtromero.shinyapps.io/elliott/
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4.3 Inference under a priori restrictions on the magnitude of β12

If the researcher is certain that β12 = β̄12, she can obtain powerful tests based on a regression of

Y −β̄12T12 on T1. If β̄12 =0, this corresponds to the short model t-test. As shown in Section 2.4,

short model t-tests are more powerful than long model t-tests when β12 =0, but do not control size

when β12≠0.

Exact knowledge of β12 may be too strong of an assumption. Suppose instead that the researcher

imposes prior knowledge in the form of a restriction on the magnitude of the interaction effect β12.

Assumption 1. |β12|≤C for some C <∞.

Assumption 1 restricts the parameter space for β12 and implies that β12 ∈ [−C,C]. We explore

two different approaches for making inferences under this assumption. First, we construct optimal

confidence intervals under Assumption 1 based on the approach developed by Armstrong et al.

(2020). Their confidence intervals are based on linear estimators for β1 and account for the worst

case bias of the estimators. As a result, the length of the confidence interval is determined by the

bias and the variance of the estimator, and to obtain optimal confidence intervals one has to solve

a bias-variance trade-off. This problem can be solved using convex optimization. We refer to this

approach as the Armstrong-Kolesar-Kwon (AKK) approach.

The second approach is based on constructing bounds on the main effect implied by Assumption

1. In particular, upper and lower bounds on β1 can be obtained from regressions of Y +CT12 on T1

and Y −CT12 on T1, respectively. We apply the procedure of Imbens & Manski (2004) and Stoye

(2009) to construct valid confidence intervals for β1. We refer to this approach as the Imbens-

Manski-Stoye (IMS) approach.23

In Figure 6, we report the rejection probabilities of tests that reject if zero is not in the AKK and
23As outlined in Appendix A.4.3, it is straightforward to use the IMS approach if the prior

information takes the form C1 ≤ β12 ≤ C2 for any −∞ < C1 < C2 < ∞, which may be more

appropriate in some settings. Further, one could make inferences under restrictions on the

direction of the interaction effects using the approach by Ketz & McCloskey (2021). Both

types of approaches may be suitable in cases where there is a strong prior that treatments are

complements or substitutes.
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IMS confidence intervals. To illustrate, we assume that C =0.1, implying that β12 ∈ [−0.1,0.1].24

Our results suggest that AKK and IMS can be substantially more powerful than long model t-

tests when the prior knowledge is correct, but may exhibit size distortions when it is not. Panel

(b) shows that the AKK and IMS power curves cross at zero. Thus, the choice between the two

approaches should be based on which values of the interaction the researchers want to direct power

to. Appendices A.7.4 and A.7.5 present the corresponding power curves for different values of β1.

When researchers are primarily interested in the main effects and feel confident that the

interactions are second-order, AKK and IMS should be strictly preferred to the short model, since

it is more realistic to pre-specify that the interaction is in a range than exactly zero. However,

pre-specifying the appropriate range of prior values for the interaction is non-trivial and requires

judgment.25

AKK and IMS remain computationally feasible in more complicated factorial designs. However,

both approaches require reliable prior knowledge on the magnitude of potentially very many

interactions to yield notable power improvements.

[Figure 6 about here.]
24Note that in our simulations σ=1. This is similar to standardizing the outcome by the

sample variance in the control group. Thus, the scale of the coefficients (β1, β2, and β12) and

of C can be interpreted as “standard deviations of the outcome”. As mentioned above, in the

papers we replicate, the median (mean) absolute value of the interaction is 0.07 (0.13) of the

standard deviation of the outcome. Further, the absolute value of the interactions is greater

than 10% of the standard deviation of the outcome in 36% of cases. Thus, in many settings it

might be reasonable to assume β12 ∈ [−0.1,0.1], but researchers will need to judge, depending

on the context, what a reasonable value for C is.
25It is problematic to use AKK or IMS based on first running the long model and not

rejecting that the interaction is in a certain range. This would result in data-dependent model

selection issue similar to those documented in Section 2.5. Thus, while AKK and IMS are

improvements over the short model, they do not solve the underlying problem of not knowing

the true value of the interaction.
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4.4 A design-based approach for improving power
The discussion above focused on improving power for detecting main effects in existing experiments

with factorial designs. While these techniques can also be used to analyze new experiments (and be

included in a pre-analysis plan), a design-based alternative is to leave the “interaction cell” empty

(i.e., to set N4 =0) and to re-assign those subjects to the other cells (see Table A.5).

Leaving the interaction cell empty yields power improvements for testing hypotheses about the

main effects relative to long model t-tests (see Appendix A.5). Figure 7 provides an illustration

based on our running example. Leaving the interaction cell empty yields tests that control size for

all values of the interaction and achieve the highest power among the approaches with uniform size

control (the long model t-test and the nearly optimal test).

This design (with interaction cells empty) yields power gains relative to running two separate

experiments, because the control group is used twice. But it avoids the problem of interactions

discussed above. An example of such a design is provided by Muralidharan & Sundararaman (2011)

who study the impact of four different interventions in one experiment with one common control

group, but no cross-cutting treatment arms.

[Figure 7 about here.]

4.5 Which econometric approach should one use in practice?
For the design of new experiments, if the primary objects of interest are the main effects, we

recommend leaving the interaction cells empty and increasing the number of units assigned exclusively

to the treatment or the control groups. This design-based approach controls size and yields notable

power improvements over the long model t-tests based on a factorial design.

For the reanalysis of existing experiments, the choice of the econometric method for making

inferences on the main effects should be based on the strength of the available prior knowledge.

If researchers have little prior knowledge about the interaction effects, we recommend using the

long model t-tests, which are the uniformly most powerful unbiased tests. If prior knowledge about

the interaction effects is available, but the researchers are not confident enough to be willing to

sacrifice size control for all values of the interactions, we recommend Elliott et al. (2015a)’s nearly

optimal tests. The nearly optimal test allows for targeting power based on prior knowledge while
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ensuring uniform size control. If precise prior knowledge about the interaction effects is available,

researchers can use the AKK or the IMS approach to leverage such prior knowledge to improve

power substantially. However, unlike the other methods, these two approaches exhibit size distortions

when the prior knowledge is incorrect.

Irrespective of which method researchers use to improve power by incorporating prior knowledge,

such prior knowledge should be pre-specified in the pre-analysis plan. In addition, we recommend

always complementing the results with long model t-tests (even if only in an appendix). These tests

have desirable optimality properties and allow for communicating results without subjective priors

about interactions.

In some high-dimensional factorial designs, estimating the long model with all interactions may

not be realistic. In this case, we recommend that the authors pre-specify which interactions they

will ignore and which treatments they will pool in the pre-analysis plan. To avoid model selection

issues, it is crucial that such choices are made ex-ante (and pre-specified) and not be data-driven.

5 When does the short model make sense?
Our discussion so far shows how using factorial designs and ignoring interactions can lead to incorrect

inferences relative to a business-as-usual counterfactual (or pure experimental control group). At

the same time, this approach is widely used in practice, perhaps reflecting a perception that classic

texts on experimental design endorse it. We revisit these texts and review the historical use of

factorial designs in field experiments to clarify the conditions and caveats under which factorial

designs and the short model may be appropriate. We highlight four relevant cases below.

The first case is where the goal of initial experiments is to explore several treatment dimensions

in an efficient way to generate promising interventions for further testing. For example, Cochran

& Cox (1957, p.152) recommend factorial designs for “exploratory work where the object is to

determine quickly the effects of a number of factors over a specified range”. Examples of such

experiments include (a) agricultural experiments that vary soil, moisture, temperature, fertilizer, and

several other inputs; and (b) online A/B testing where large technology companies run thousands

of randomized experiments each year to optimize profits over several dimensions (e.g., Kohavi et al.,

2020). Both sets of examples feature sequential testing, making factorial designs an efficient way to

quickly learn about which of several treatment dimensions that could be manipulated may be worth
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studying and testing further. In contrast, policy experiments are typically run only once, making

factorial designs and short model estimates less desirable.

The second case is when the goal of the experiment is not hypothesis testing but to minimize MSE

criteria (or other loss functions), which involve a bias-variance trade-off in estimating the main effects.

For example, for small values of the interaction effects, estimators based on the short model can yield

a lower root MSE than the estimators based on the design which leaves the interaction cell empty

(Blair et al., 2019). These alternative criteria also justify the use of factorial designs for agricultural

experiments and online A/B testing, since their goal is to optimize decision-making over several factors

(to maximize yields or profits) as opposed to testing if individual factors are “significant”. Again, this

contrasts with the case of policy experiments, where the goal is typically to test if a program or policy

had a significant effect, and factorial designs and short-model inferences may therefore be problematic.

The third case is to improve an experiment’s external validity. Cochran & Cox (1957, p.152)

recommend factorial designs for “experiments designed to lead to recommendations that must apply

over a wide range of conditions. Subsidiary factors may be brought into an experiment so as to test

the principal factors under a variety of conditions similar to those that will be encountered in the

population to which recommendations are to apply”; see also the discussion in Fisher (1992). Thus,

factorial designs and the short model may be fine when one dimension of the experiment is studying

reasonable variants of the main treatment, but less so when all treatments are of primary interest.26

The fourth case is conceptual (as opposed to policy) experiments, such as resume audit studies,

where many or all of the characteristics that are randomized (e.g., age, education, race, and gender)

do exist in the population. In these cases, a weighted average short model effect may be a reasonable

target parameter subject to researchers indicating how the resulting effect should be interpreted.

However, even for such experiments, we recommend (when feasible) designing the experiments such

that the treatment share of various characteristics being studied is the same as their population

proportion. Doing so will make the short-model coefficient more likely to approximate a population

relevant parameter of interest.
26For example, in Alatas et al. (2012), the primary treatment effect of interest is the impact

of community-based targeting, but they also randomize different aspects of how to run the

community meeting (which are reasonable variants of the main treatment).
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6 Conclusion
In this paper we study the theory and practice of inference in randomized experiments with factorial

designs. These designs have been widely used and motivated by two main considerations: (i)

studying more treatments in a cost-effective way, and (ii) learning about interactions. We show

that both of these uses can be problematic in practice, driven to a large extent by the lack of power

to detect interactions.

Given our discussion and results, we recommend that (if realistic) studies using factorial designs

should always present the fully-saturated long regression model (even if only in an appendix) for

transparency. If researchers would like to focus on results from the short model, they should clearly

indicate that treatment effects should be interpreted as a composite effect that includes a weighted-

average of interactions with other treatments. Further, if the estimand of interest is based on the

short model, this should be specified in a pre-analysis plan, and not justified ex-post based on

estimated interactions being insignificant (due to the problem of data-dependent model selection).

In practice, researchers’ use of factorial designs and the short model is often motivated by prior

beliefs that the absolute values of the interactions are “small”. In such cases, the econometric

approaches we discuss allow power gains for inference against a business-as-usual counterfactual (over

the long model) while maintaining size control for relevant values of the interaction. In such cases, we

recommend that researchers pre-specify their priors and intended econometric approach for inference.

If the primary objects of interest are the main effects, an alternative design is to leave the

interaction cells empty. This design-based approach naturally controls size and yields notable power

improvements. If interaction effects are of primary interest, we recommend that experiments be

explicitly powered to detect interactions and to indicate this in the pre-analysis plan (as, for example,

in Mbiti et al. (2019)).

Recently, our recommendations have been characterized as too conservative by Banerjee et al.

(2021), who propose a LASSO-based method for making inferences on the most effective combination

of treatments. Applying their approach to high-dimensional factorial designs is appealing: it allows

researchers to explore the parameter space of main and interaction effects. However, their method

relies on the strong assumption that “[treatments and interactions] have either no effect or have

sufficiently large (positive or negative) influence on the outcomes.” This restriction avoids model
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selection issues by assumption. It may be a good approximation in highly-powered experiments or

when researchers have strong prior knowledge about effect sizes.

Finally, it is worth noting that factorial designs do provide an efficient way of learning about

multiple treatments as well as their interactions in the same experiment. The problems we highlight

stem in large part from using factorial designs in conjunction with a focus on statistical significance

for inference on whether treatment effects or interactions are meaningful. This approach reflects the

default frequentist paradigm in experimental economics. Going forward, Bayesian methods (that

do not privilege a binary “significant or not” threshold for inference) may constitute a promising

framework for efficient learning in experiments with cross-cutting designs (e.g., Kassler et al., 2019).
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Figure 1: The perceived power gains from the short model come at the cost of biased

estimators and not controlling size, unless β12 is exactly equal to zero

(a) Power

β12

P
ro

ba
bi

lit
y 

of
 r

ej
ec

tin
g 

H
0

:β
1=

0

Power gain

Long
Short

N=1,000
β1=0.2
β2=00.0

0.2

0.4

0.6

0.8

1.0

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

(b) Bias

β12

B
ia

s

Long
Short

N=1,000
β1=β2=0−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

(c) Size

β12

P
ro

ba
bi

lit
y 

of
 r

ej
ec

tin
g 

H
0

:β
1=

0

Long
Short

N=1,000
β1=β2=0

0.0

0.1

0.2

0.3

0.4

0.5

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Note: Simulations are based on the running example with sample size N, normal iid errors,

and 10,000 repetitions. The size for Figures 1c and 1a is α=0.05.
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Figure 2: Model selection does not control size
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Note: Simulations are based on the running example with sample size N, normal iid errors, and

10,000 repetitions. The size is α=0.05. For the model selection, the short model is estimated

if one fails to reject β12 =0 at the 5% level.
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Figure 3: Distribution of the estimated interaction effects
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Note: This figure shows the distribution of the interactions between the main treatments (N=868

in this figure). We trim the top and bottom 1% of the distribution. The median interaction

for these papers is 0.00σ (dashed vertical line), the median absolute value of the interaction is

0.07σ (solid vertical line), and the median relative absolute value of the interaction with respect

to the main treatment effect is 0.37. 6.2% of interactions are significant at the 10% level, 3.6%

are significant at the 5% level, and 0.9% are significant at the 1% level.
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Figure 4: Treatment effects estimates based on the long and the short model
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Note: This figure shows how the main treatment estimates change between the short and the long

model across all studies (N=172 in this figure). Figure 4a has all the treatment effects, while Figure

4b zooms in to cases where the value of the main treatment effects in the short model is between

-1 to 1 standard deviation. The median main treatment estimate from the short model is 0.01σ,

the median main treatment estimate from the long model is 0.02σ, the average absolute difference

between the treatment estimates of the short and the long model is 0.05σ, the median absolute

difference in percentage terms between the treatment estimates of the short and the long model is

96%, and 26% of treatment estimates change sign when they are estimated using the long model

instead of the short model.
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Figure 5: Elliott et al. (2015a)’s nearly optimal test controls size and yields power gains

over running the full model near β̄12 =0
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Note: Simulations are based on the running example with sample size N, normal iid errors,

and 10,000 repetitions. The size for Figures 5a and 5b is α=0.05. EMW refers to Elliott et al.

(2015a)’s nearly optimal test. The power bound in Figure 5b is the power of the one-sided long

model t-test for the testing problem H0 :β1 =0 vs. H1 :β1 >0.
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Figure 6: Restrictions on the magnitude of β12 yield power gains if they are correct but

lead to incorrect inferences if they are not
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Note: Simulations are based on the running example with sample size N, normal iid errors,

and 10,000 repetitions. The size for Figures 6a and 6b is α=0.05. AKK refers to Armstrong

et al. (2020)’s approach for constructing optimal confidence intervals under prior knowledge

about the magnitude of β12, |β12| ≤ 0.1 (dashed vertical lines). IMS refers to the Imbens &

Manski (2004) and Stoye (2009) approach for constructing valid confidence intervals under

prior knowledge about the magnitude of β12, |β12|≤0.1 (dashed vertical lines).
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Figure 7: Leaving the interaction cell empty increases power relative to approaches that

control size for all β12
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Note: Simulations are based on the running example with sample size N, normal iid errors,

and 10,000 repetitions. The size for Figures 7a and 7b is α = 0.05. EMW refers to Elliott

et al. (2015a)’s nearly optimal test. AKK refers to Armstrong et al. (2020)’s approach for

constructing optimal confidence intervals under prior knowledge about the magnitude of β12.

IMS refers to the Imbens & Manski (2004) and Stoye (2009) approach for constructing valid

confidence intervals under prior knowledge about the magnitude of β12. The design of the

experiment with the empty interaction cell is optimal for achieving equal power to detect both

main effects; see Appendix A.5 for details.
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Table 1: 2×2 factorial design

T1

No Yes

T2

No N1 N2

Yes N3 N4

Note: Nj is the number of individuals randomly assigned to cell j.
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Table 2: Field experiments published in top-5 journals between 2007 and 2017

AER ECMA JPE QJE ReStud Total

Field experiments 43 9 14 45 13 124

With factorial designs 11 2 4 6 4 27

Interactions included 3 1 1 2 1 8

Interactions not included 8 1 3 4 3 19
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Table 3: Significance of treatment estimates based on the long and the short model

Panel A: Significance at the 10% level

Without interaction

With interaction Not significant Significant Total

Not significant 95 34 129

Significant 6 37 43

Total 101 71 172

Panel B: Significance at the 5% level

Without interaction

With interaction Not significant Significant Total

Not significant 111 29 140

Significant 6 26 32

Total 117 55 172

Panel C: Significance at the 1% level

Without interaction

With interaction Not significant Significant Total

Not significant 140 17 157

Significant 2 13 15

Total 142 30 172

This table shows the number of significant coefficients

at a given level when estimating the long regression

(columns) and the short regression (rows). It includes

information from all papers with factorial designs and

publicly available data that do not include the interac-

tions in the original study. Panel A uses a 10% signifi-

cance level, Panel B uses 5%, and Panel C uses 1%.
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A Online appendix for “Factorial designs, model selection, and (incorrect) inference in

randomized experiments”

A.1 Papers with factorial designs published in Top-5 economics journals

Table A.1: Papers with factorial designs published between 2007 and 2017 in top-5 economics journals sorted by citation count (as of July 4, 2019)

Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy

In Design Included Available Evaluation

Olken (2007) Monitoring Corruption: Evi-

dence from a Field Experiment

in Indonesia

JPE 2007 1529 3 2 0 Yes Yes

Banerjee et al. (2007) Remedying Education: Evi-

dence from Two Randomized

Experiments in India

QJE 2007 1213 2 1 0 Yes Yes

Continued on next page
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Table A.1 – continued from previous page

Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy

In Design Included Available Evaluation

Duflo et al. (2011) Peer Effects, Teacher Incen-

tives, and the Impact of Track-

ing: Evidence from a Random-

ized Evaluation in Kenya

AER 2011 787 3 4 0 Yes Yes

Kleven et al. (2011) Unwilling or Unable to Cheat?

Evidence From a Tax Audit

Experiment in Denmark

ECMA 2011 776 2 1 0 No Yes

Karlan et al. (2014) Agricultural Decisions after Re-

laxing Credit and Risk Con-

straints

QJE 2014 612 2 1 1 No Yes

Bertrand et al. (2010) What’s Advertising Content

Worth? Evidence from a Con-

sumer Credit Marketing Field

Experiment

QJE 2010 522 14 85 0 Yes No

Continued on next page
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Table A.1 – continued from previous page

Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy

In Design Included Available Evaluation

Karlan & List (2007) Does Price Matter in Charita-

ble Giving? Evidence from a

Large-Scale Natural Field Ex-

periment

AER 2007 506 7 28 0 Yes No

Thornton (2008) The Demand for, and Impact

of, Learning HIV Status

AER 2008 453 2 1 0 Yes Yes

Haushofer & Shapiro

(2016)

The Short-term Impact of Un-

conditional Cash Transfers to

the Poor: Experimental Evi-

dence from Kenya

QJE 2016 393 6 8 3 Yes Yes

Alatas et al. (2012) Targeting the Poor: Evidence

from a Field Experiment in In-

donesia

AER 2012 330 4 16 0 Yes Yes

Continued on next page
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Table A.1 – continued from previous page

Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy

In Design Included Available Evaluation

Karlan & Zinman (2008) Credit Elasticities in Less-

Developed Economies: Impli-

cations for Microfinance

AER 2008 311 3 2 0 Yes No

Duflo et al. (2015) Education, HIV, and Early Fer-

tility: Experimental Evidence

from Kenya

AER 2015 282 3 3 1 Yes Yes

Andreoni et al. (2017) Avoiding the Ask: A Field Ex-

periment on Altruism, Empa-

thy, and Charitable Giving

JPE 2017 270 2 1 1 Yes No

Jakiela & Ozier (2015) Does Africa Need a Rot-

ten Kin Theorem? Experi-

mental Evidence from Village

Economies

ReStud 2016 245 3 6 6 Yes No

Continued on next page
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Table A.1 – continued from previous page

Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy

In Design Included Available Evaluation

Eriksson & Rooth (2014) Do Employers Use Unemploy-

ment as a Sorting Criterion

When Hiring? Evidence from

a Field Experiment

AER 2014 238 34 71680 0 Yes No

Allcott & Taubinsky

(2015)

Evaluating Behaviorally Moti-

vated Policy: Experimental Ev-

idence from the Lightbulb Mar-

ket

AER 2015 237 2 1 0 No No

Flory et al. (2014) Do Competitive Workplaces

Deter Female Workers? A

Large-Scale Natural Field Ex-

periment on Job Entry Deci-

sions

ReStud 2015 204 10 24 12 Yes No

Continued on next page
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Table A.1 – continued from previous page

Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy

In Design Included Available Evaluation

Brown et al. (2010) Shrouded Attributes and Infor-

mation Suppression: Evidence

from the Field

QJE 2010 189 3 6 6 No No

DellaVigna et al. (2016) Voting to Tell Others ReStud 2017 169 4 15 0 Yes No

Fischer (2013) Contract Structure, Risk-

Sharing, and Investment

Choice

ECMA 2013 162 7 9 9 Yes No

Kaur et al. (2015) Self-Control at Work JPE 2015 154 8 16 0 Yes No

Cohen et al. (2015) Price Subsidies, Diagnostic

Tests, and Targeting of

Malaria Treatment: Evidence

from a Randomized Controlled

Trial

AER 2015 151 3 7 7 Yes Yes

Continued on next page
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Table A.1 – continued from previous page

Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy

In Design Included Available Evaluation

Blattman et al. (2017) Reducing Crime and Violence:

Experimental Evidence from

Cognitive Behavioral Therapy

in Liberia

AER 2017 135 2 1 1 Yes Yes

Khan et al. (2015) Tax Farming Redux: Exper-

imental Evidence on Perfor-

mance Pay for Tax Collectors

QJE 2016 133 6 8 0 Yes Yes

Balafoutas et al. (2013) What Drives Taxi Drivers? A

Field Experiment on Fraud in

a Market for Credence Goods

ReStud 2013 126 5 6 0 Yes No

Kendall et al. (2015) How Do Voters Respond to

Information? Evidence from a

Randomized Campaign

AER 2015 116 5 5 5 Yes No

Continued on next page
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Table A.1 – continued from previous page

Authors Title Journal Year Citations Treatments Interactions Interactions Data Policy

In Design Included Available Evaluation

Pallais & Sands (2016) Why the Referential Treat-

ment? Evidence from Field

Experiments on Referrals

JPE 2016 85 3 12 0 No No

Note: This table provides relevant information from all articles with factorial designs published in top-5 journals. Citation counts are from

Google Scholar on July 4th of 2019. Treatments is the number of different treatments in the paper. “Interactions in Design” is the

number of interactions in the experimental design. “Interactions Included” is the number of interactions included in the main specification

of the paper. Data available, refers to whether the data is publicly available or not. Allcott & Taubinsky (2015) has two field experiments.

The table refers to the second one. One of the three dimensions of randomization in Flory et al. (2014) does not appear in the publicly

available data. An Online Appendix (in http: / / mauricio -romero .com/ pdfs/ papers/ Appendix _crosscuts .pdf ) describes

the experimental design of each of the 27 papers and provides further details on our replication analysis.

8
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A.1.1 All papers

Figure A.1: Distribution of the t-value of interaction terms across studies
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Note: If studies have factorial designs that cross-randomize more than two treatments only

two-way interactions are included in this calculation. The vertical lines are at ±1.96.
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A.1.2 Ten most cited papers

Figure A.2: Treatment estimates based on the long and the short model

(a) Main treatment estimates
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(b) Interaction
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Note: Both figures show treatment estimates from the ten most cited papers with factorial

designs and publicly available data that do not include the interactions in the original study.

Figure A.2a shows how the main treatment estimates change across the short and the long

model across studies (N=85 in this figure). The median main treatment estimate from the short

model is 0.01σ, the median main treatment estimate from the long model is 0.01σ, the average

absolute difference between the treatment estimates of the short and the long model is 0.05σ, the

median absolute difference in percentage terms between the treatment estimates of the short and

the long model is 131%, and 28% of treatment estimates change sign when they are estimated

using the long instead of the short model. Figure A.2b shows the distribution of the interactions

between the main treatments (N=266 in this figure). We trim the top and bottom 1% of the

distribution. The median interaction is -0.00σ (dashed vertical line), the median absolute value

of the interactions is 0.05σ (dashed vertical line), 5.6% of interactions are significant at the

10% level, 2.6% are significant at the 5% level, and 0.0% are significant at the 1% level, and the

median relative absolute value of the interaction with respect to the main treatment effect is 0.37.
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Table A.2: Significance of treatment estimates based on the long and the short model

Panel A: Significance at the 10% level

Without interaction

With interaction Not significant Significant Total

Not significant 49 13 62

Significant 6 17 23

Total 55 30 85

Panel B: Significance at the 5% level

Without interaction

With interaction Not significant Significant Total

Not significant 60 9 69

Significant 4 12 16

Total 64 21 85

Panel C: Significance at the 1% level

Without interaction

With interaction Not significant Significant Total

Not significant 73 3 76

Significant 1 8 9

Total 74 11 85

This table shows the number of coefficients that are

significant at a given level when estimating the long

regression (columns) and the short regression (rows).

This table only includes information from the ten

most cited papers with factorial designs and publicly

available data that do not include the interactions in

the original study. Table 3 has data for all papers with

factorial designs and publicly available data that do

not include the interaction in the original study. Panel

A uses a 10% significance level, Panel B uses 5%, and

Panel C uses 1%.
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Figure A.3: Distribution of the t-value of interaction terms across studies
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Note: If studies have factorial designs that cross-randomize more than two treatments only

two-way interactions are included in this calculation. The vertical lines are at ±1.96.

12



A.1.3 Policy experiments

Figure A.4: Treatment estimates from the long and the short regression

(a) Main treatment estimates
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Note: Both figures show treatment estimates from the papers with factorial designs and publicly

available data that do not include the interactions in the original study and do policy evaluation

(N=67 in this figure). Figure A.4a shows how the main treatment estimates change across the

short and the long model across studies. The median main treatment estimate from the short

model is 0.06σ, the median main treatment estimate from the long model is 0.05σ, the average

absolute difference between the treatment estimates of the short and the long model is 0.07σ, the

median absolute difference in percentage terms between the treatment estimates of the short and

the long model is 69%, and 21% of treatment estimates change sign when they are estimated

using the long model instead of the short model. Figure A.4b shows the distribution of the

interactions between the main treatments (N=126 in this figure). We trim the top and bottom 1%

of the distribution. The median interaction is -0.01σ (dashed vertical line), the median absolute

value of interactions is 0.23σ (solid vertical line), 6.3% of interactions are significant at the

10% level, 3.2% are significant at the 5% level, and 0.0% are significant at the 1% level, and the

median relative absolute value of the interaction with respect to the main treatment effect is 1.01.
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Table A.3: Significance of treatment estimates from the long and the short regression

Panel A: Significance at the 10% level

Without interaction

With interaction Not significant Significant Total

Not significant 31 10 41

Significant 5 21 26

Total 36 31 67

Panel B: Significance at the 5% level

Without interaction

With interaction Not significant Significant Total

Not significant 43 6 49

Significant 5 13 18

Total 48 19 67

Panel C: Significance at the 1% level

Without interaction

With interaction Not significant Significant Total

Not significant 56 3 59

Significant 1 7 8

Total 57 10 67

This table shows the number of coefficients that are

significant at a given level when estimating the long

regression (columns) and the short regression (rows).

This table only includes information from papers with

factorial designs and publicly available data that do

not include the interactions in the original study and

do policy evaluation. Table 3 has data for all papers

with factorial designs and publicly available data that

do not include the interaction in the original study.

Panel A uses a 10% significance level, Panel B uses

5%, and Panel C uses 1%.
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Figure A.5: Distribution of the t-value of interaction terms across studies
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Note: If studies have factorial designs that cross-randomize more than two treatments only

two-way interactions are included in this calculation. The vertical lines are at ±1.96.
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A.1.4 Studies with all interactions included

Figure A.6: Treatment estimates based on the long and the short model

(a) Main treatment estimates
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Note: Both figures show treatment estimates from the papers with factorial designs and publicly

available data that do not include the interaction in the original study and do policy evaluation.

Figure A.6a shows how the main treatment estimates change across the short and the long model

across studies (N=117 in this figure). The median main treatment estimate from the short

model is -0.03σ, the median main treatment estimate from the long model is -0.02σ, the average

absolute difference between the treatment estimates of the short and the long model is 0.05σ, the

median absolute difference in percentage terms between the treatment estimates of the short and

the long model is 37%, and 14% of treatment estimates change sign when they are estimated

using the long or the short model. Figure A.6b shows the distribution of the interactions

between the main treatments (N=104 in this figure). We trim the top and bottom 1% of the

distribution. The median interaction is -0.01σ (dashed vertical line), the median absolute value

of interactions is 0.08σ (solid vertical line), 4.5% of interactions are significant at the 10% level,

1.1% are significant at the 5% level, and 0.0% are significant at the 1% level, and the median

relative absolute value of the interaction with respect to the main treatment effect is 0.52.
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Table A.4: Significance of treatment estimates based on the long and the short model

Panel A: Significance at the 10% level

Without interaction

With interaction Not significant Significant Total

Not significant 61 13 74

Significant 4 39 43

Total 65 52 117

Panel B: Significance at the 5% level

Without interaction

With interaction Not significant Significant Total

Not significant 68 10 78

Significant 6 33 39

Total 74 43 117

Panel C: Significance at the 1% level

Without interaction

With interaction Not significant Significant Total

Not significant 77 12 89

Significant 2 26 28

Total 79 38 117

This table shows the number of coefficients that are

significant at a given level when estimating the long

regression (columns) and the short regression (rows).

This table only includes information from papers with

factorial designs and publicly available data that do

include the interaction in the original study. Table 3

has data for all papers with factorial designs and pub-

licly available data that do not include the interaction

in the original study. Panel A uses a 10% significance

level, Panel B uses 5%, and Panel C uses 1%.
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Figure A.7: Distribution of the t-value of interaction terms across studies
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Note: If studies have factorial designs that cross-randomize more than two treatments only

two-way interactions are included in this calculation. The vertical lines are at ±1.96.

A.2 Derivation of expressions for the regression coefficients

A.2.1 Derivation of the expressions for β1, β2, and β12

Because the long regression model (1) is fully saturated, we have

β1 = E(Y |T1 =1,T2 =0)−E(Y |T1 =0,T2 =0),

β2 = E(Y |T1 =0,T2 =1)−E(Y |T1 =0,T2 =0),

β12 = E(Y |T1 =1,T2 =1)−E(Y |T1 =0,T2 =1)

−[E(Y |T1 =1,T2 =0)−E(Y |T1 =0,T2 =0)].

Random assignment implies that, for (t1,t2)∈{0,1}×{0,1},

E(Y |T1 =t1,T2 =t2) = E(Yt1,t2 |T1 =t1,T2 =t2)

= E(Yt1,t2).

Thus, it follows that

β1 = E(Y1,0−Y0,0),

β2 = E(Y0,1−Y0,0),

β12 = E(Y1,1−Y0,1−Y1,0+Y0,0).
18



A.2.2 Derivation of the expressions for βs
1 and βs

2

Here we derive Equation (6). Equation (7) then follows from rearranging terms. The derivations of

Equations (8) and (9) are similar and thus omitted.

For the short regression model (2), independence of T1 and T2 implies that

βs
1 = E(Y |T1 =1)−E(Y |T1 =0).

Consider

E(Y |T1 =1) = E(Y |T1 =1,T2 =1)P(T2 =1 |T1 =1)

+E(Y |T1 =1,T2 =0)P(T2 =0 |T1 =1)

= E(Y1,1)P(T2 =1)+E(Y1,0)P(T2 =0),

where the first equality follows from the law of iterated expectations and the second equality follows

by the definition of potential outcomes and random assignment. Similarly, obtain

E(Y |T1 =0) = E(Y0,1)P(T2 =1)+E(Y0,0)P(T2 =0).

Thus, we have

βs
1 = E(Y |T1 =1)−E(Y |T1 =0)

= E(Y1,1−Y0,1)P(T2 =1)+E(Y1,0−Y0,0)P(T2 =0).

A.3 Power to detect interactions in the long model
Under the assumptions in Section 2.4, the standard errors of the long model are

SE
(
β̂1
)

=σ

√
1

N1
+ 1

N2
and SE

(
β̂12
)

=σ

√
1

N1
+ 1

N2
+ 1

N3
+ 1

N4
.

To achieve power κ, the true interaction effect needs to satisfy (e.g., Duflo et al., 2007)

β12 >
(
Φ−1(κ)+Φ−1(1−α/2)

)
SE

(
β̂12
)

=MDEβ12.

where α is the size of the test. Here MDE stands for minimum detectable effect size. Similarly, to

achieve power κ for detecting the main effect, it must satisfy

β1 >
(
Φ−1(κ)+Φ−1(1−α/2)

)
SE

(
β̂1
)

=MDEβ1.

We can relate the MDEs to the overall sample size required for detecting interactions, NI, and main

effects, NM , respectively. To illustrate, suppose that the overall sample size is equally distributed

across all four cells (the power-maximizing design for detecting interactions). In this case, the

standard errors are SE
(
β̂1
)

=σ
√

8/NM and SE
(
β̂12
)

=σ
√

16/NI, such that
MDEβ1

MDEβ12

=
σ
√

8
NM

σ
√

16
NI

and 2
(

MDEβ1

MDEβ12

)2

= NI

NM

.
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Suppose that the MDE for the interaction effect is half the MDE for the main effect. Then the

relative sample size needed to be adequately powered (NI/NM) is 8. That is, we need eight times

the sample size to detect an interaction effect that is half the size of the main effect.1 Even if the

MDE for the interaction is the same as the MDE for the main effect, one would need twice the

sample size to detect the interaction effect than to detect the main effect. Figure A.8 illustrates

the general relationship between NI/NM and MDEβ12/MDEβ1.

Figure A.8: Relative sample size

R
el

at
iv

e 
sa

m
pl

e 
si

ze

MDEβ12

MDEβ1

0

5

15

25

35

45

0.25 0.5 0.75 1

8

Note: For We assume the sample is divided equally among the four cells in Table 1. This figure

plots the relative sample size
(

NI

NM

)
as a function of the relative MDEs

(
MDEβ12
MDEβ1

)
.

Figure A.9 shows the Type-M error for different values of the interaction (relative to the MDE
1Alternatively, one can compare MDEβ12 to the MDE based on the short model, MDEβs

1
,

as in Gelman (2018). Because SE(β̂s
1)=σ

√
4/N, the required sample size for detecting an

interaction is 16 times larger than for detecting main effects based on the short model.
20



of the main effect, which determines the sample size).2 We use the closed form formula provided

by Lu et al. (2019) for the Type-M error. In the figure, we assume the MDE for the main effect

is 0.2σ (or equivalently, a sample of 1,570 equally divided among the four cells, assuming size is

α=0.05 and power is κ=0.8).
2A related problem with under-powered studies is the Type S error rate, which is the

probability that conditional on being significant, the estimate of the interaction in a hypothetical

replication study based on the same design as the original study has an incorrect sign (see

p.643 in Gelman & Carlin, 2014).
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Figure A.9: Type-M error
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Note: We assume the sample is divided equally among the four cells in Table 1. This figure

plots the Type-M error for different values of the interaction (relative to the MDE of the main

effect, which determines the sample size). We use the closed form formula provided by Lu et al.

(2019) for the Type-M error. We assume that size is α=0.05, power is κ=0.8, and the MDE

for the main effect is 0.2σ (i.e., a sample of 1,570 equally divided among the four cells).

A.4 Detailed description of the econometric methods

A.4.1 The EMW approach

To describe Elliott et al. (2015a)’s nearly optimal test, note that under standard conditions, the

t-statistics are approximately normally distributed in large samples t̂1

t̂12

 a∼N


 t1

t12

,

1 ρ

ρ 1


, (13)
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where t̂1 = β̂1
SE(β̂1), t̂12 = β̂12

SE(β̂12), t1 = β1
SE(β̂1), t12 = β12

SE(β̂12), and ρ=Cov(̂t1,̂t12). Define t̂=(̂t1,̂t12)

and t = (t1,t12). In practice, we replace the unknown SE(β̂1), SE(β̂12), and Cov(̂t1,t̂12) with

heteroskedasticity robust estimators, which are consistent under weak conditions.

Consider the problem of maximizing power in the following hypothesis testing problem:

H0 : t1 =0, t12 ∈R against H1 : t1≠0, t12 =0. (14)

A common approach to construct powerful tests for problems with composite hypotheses is to choose

tests based on their weighted average power. In particular, we seek a powerful test for “H0: the

density of t̂ is ft,t1 =0,t12 ∈R” against the simple alternative “H1,F : the density of t̂ is ∫ftdF(t)”,

where the weighting function F is chosen by the researcher. Following Elliott et al. (2015a), we choose

F so that it assigns equal mass to 2 and −2. To obtain the best test, one needs to find a LFD, ΛLF ,

such that the size α Neyman-Pearson test of H0,ΛLF against H1,F is also a size α test of H0 against

H1,F , where H0,Λ : the density of t̂ is ∫ftdΛ(t) (Lehmann & Romano, 2005; Elliott et al., 2015a).

Since it is generally difficult to analytically determine and computationally approximate ΛLF ,

Elliott et al. (2015a) suggest to instead focus on an approximate LFD, ΛALF , which yields a nearly

optimal test for H0 against H1,F . The resulting test is then just a Neyman-Pearson test based on

ΛALF .3

A.4.2 The AKK approach

To describe Armstrong et al. (2020)’s approach, we write model (11) in vector form as

Y=β1T1+β12T12+ε. (15)

Suppose that X=(T1,T12) is fixed and ε∼N(0,σ2IN), where σ2 is known.4 The algorithm we

describe below accommodates non-Gaussian and heteroskedastic errors. A linear estimator of β1

can be written as β̂1 =a′Y, for some a that can depend on X. Given parameters (β1,β12), the bias

of β̂1 is a′(β1T1+β12T12)−β1. The “worst case” bias of β̂1 is

bias = sup
β1∈R,β12∈[−C,C]

a′(β1T1+β12T12)−β1. (16)

The standard error of β̂1, SE(β̂1)=σ
√

a′a, does not depend on (β1,β12).
3To improve the performance of their procedure, Elliott et al. (2015a) suggest a switching

rule that depends on |̂t12| such that for large enough values of |̂t12|, one switches to regular

hypothesis testing. Following their suggestion, we use 6 as the switching value.
4If X is random, the procedure remains valid, as it is valid conditional on X.
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The t-ratio β̂1−β1
SE(β̂1) is normally distributed, β̂1−β1

SE(β̂1) ∼N(b,1), where |b|≤ bias
SE(β̂1). Thus, a two-

sided (1−α) confidence interval centered at β̂1 can be constructed as

β̂1±cvα

(
bias

SE(β̂1)

)
SE(β̂1), (17)

where cvα(x) is the (1−α) quantile of a |N(x,1)| distribution. The length of the confidence interval

(17) is increasing in bias and SE(β̂1). Thus, to construct optimal confidence intervals, a is chosen

to solve this bias variance trade-off.5 Armstrong et al. (2020) show that this problem can be solved

using a regularized regression of T1 on T12.

We use Algorithm 3.1 in Section 3 of Armstrong et al. (2020), which accommodates het-

eroskedastic and non-Gaussian errors.6 To describe the algorithm, let π∗
λ denote the solution to the

following penalized regression problem

min
π

∥T1−πT12∥2
2+λ|π|. (18)

The algorithm has three steps.

1. Compute initial estimates of the residuals ε̂1,...,ε̂N from the long regression model and obtain

an initial variance estimator σ̂2 = 1
N

∑N
i=1ε̂

2
i .

2. Compute the solution path {π∗
λ}λ>0 for the regularized regression (18), indexed by λ. For

each λ, compute β̂1,λ as

β̂1,λ = (T1−π∗
λT12)′Y

(T1−π∗
λT12)′T1

(19)

and obtain biasλ and SEλ as

biasλ = C

|πλ|
(T1−π∗

λT12)′T12π
∗
λ

(T1−π∗
λT12)′T1

and SE2
λ = σ̂2∥T1−π∗

λT12∥2
2

[(T1−π∗
λT12)′T1]2

. (20)

3. Choose λ∗ = arg minλ cvα

(
biasλ

SEλ

)
SEλ and compute robust standard errors ŜEr,λ∗ =

5Optimality here refers to minimizing the width of the confidence intervals. We focus on

the width of the confidence intervals because of the intuitive appeal and practical relevance of

this criterion. If one were to optimize the power of the test that the confidence interval inverts,

the resulting procedure can be different.
6The implementation of the optimal confidence intervals with potentially heteroskedastic

and non-Gaussian errors mimics the common practice of applying OLS in conjunction with

heteroskedasticity robust standard errors, rather than weighted least squares; see Remark 3.2

in Armstrong et al. (2020) for a discussion.
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√∑N
i=1a

2
λ∗,iε̂

2
i , where aλ∗ = (T1−π∗

λ∗T12)
(T1−π∗

λ∗T12)′T1
. Return the optimal (1−α) confidence interval

β̂1,λ∗ ±cvα

 biasλ∗

ŜEr,λ∗

ŜEr,λ∗. (21)

A.4.3 The IMS approach

For a given β12 ∈ [C1,C2], the population regression coefficient from a regression of Y −β12T12 on

X =(1,T1,T2)′ is

β(β12) = E(XX ′)−1
E(X(Y −β12T12))

= E(XX ′)−1
E(XY )−β12E(XX ′)−1

E(XT12)

Note that E(XX ′)−1E(XT12)=(γ0,γ1,γ2)′ is the population regression coefficient from a regression

of T12 on X. Independence of T1 and T2 implies that γ1 =E(T12 |T1 =1)−E(T12 |T1 =0) and

γ2 =E(T12 |T2 =1)−E(T12 |T2 =0) both of which are positive. Consequently, the identified set for

βt, t∈{1,2}, is given by

βt ∈ [βt(C2),βt(C1)]=
[
βl

t,β
u
t

]
.

The lower bound βl
t can be estimated from an OLS regression of Y −C2T12 on X. Similarly, the

upper bound βu
t can be obtained from an OLS regression of Y −C1T12 on X. Under standard

conditions, the OLS estimators β̂l
t and β̂u

t are asymptotically normal and the asymptotic variances

Avar
(
β̂l

t

)
and Avar

(
β̂u

t

)
can be estimated consistently. We can therefore apply the approach of

Imbens & Manski (2004) and Stoye (2009) to construct confidence intervals for βt:7

CI1−α =

β̂l
t−cIM ·

√√√√Âvar
(
β̂l

t

)
N

, β̂u
t +cIM ·

√√√√Âvar
(
β̂u

t

)
N

, (22)

where the critical value cIM solves

Φ

cIM +
√

N · β̂u
t −β̂l

t√
max

(
Âvar

(
β̂l

t

)
,Âvar

(
β̂u

t

))
−Φ(−cIM)=1−α.

By Imbens & Manski (2004) and Stoye (2009), CI1−α is a valid confidence interval for βt.

In the running example in the main text we imposed C1 = −0.1 and C2 = 0.1. Figure A.10

shows size and power of the IMS approach for C1 =0 and C2 =0.1 and for C1 =−0.1 and C2 =0.
7By construction, P(β̂u

t ≥ β̂l
t) = 1 so that Lemma 3 in Stoye (2009) ensures that the

conditions in Imbens & Manski (2004) hold.
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Figure A.10: Two sided and one-sided restrictions on β12 under IMS
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The

size for Figures 6a and 6b is α=0.05. IMS refers to the Imbens & Manski (2004) and Stoye

(2009) approach for constructing valid confidence intervals under prior knowledge about the

magnitude of β12. The dashed vertical lines are placed at β12 =−0.1 and β12 =0.1.

A.5 Econometric details for the design-based solution

A.5.1 Power improvements

Consider a factorial design with an empty interaction cell as in Section 4.4 (see Table A.5) and the

following population regression model

Y =β∗
0 +β∗

1T1+β∗
2T2+ε∗. (23)

Let β̂∗
1 and β̂∗

2 denote the OLS estimators of β∗
1 and β∗

2. If T1 and T2 are randomly assigned, β̂∗
1

and β̂∗
2 are consistent for the respective main effects (see Appendix A.5.2).8

To illustrate the power implications of leaving the interaction cell empty, consider an experiment

where the researcher cares equally about power to detect an effect of T1 and T2, and thus assigns the

same sample size to both treatments: N∗
2 =N∗

3 =N∗
T . To illustrate, we focus on β∗

1. The variance
8Note in this case T1 and T2 are not independent of each other because of the negative

correlation between the probability of being assigned to T1 and T2.
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of β̂∗
1 is given by V ar

(
β̂∗

1

)
=σ2 N−N∗

T

(N−2N∗
T )N∗

T
. V ar

(
β̂∗

1

)
is minimized when N∗

T = N
2

(
2−

√
2
)

and

we assume that the experiment is designed in this manner.9 A comparison to the variance of the

estimator based on the long model, β̂1, shows that V ar
(
β̂∗

1

)
≤ V ar

(
β̂1
)
.10 Thus, leaving the

interaction cell empty yields power improvements for testing hypotheses about the main effects

relative to long model t-tests.

Table A.5: Leaving the interaction cell empty

T1

No Yes

T2

No N∗
1 N∗

2

Yes N∗
3 0

A.5.2 Consistency of the OLS estimators based on model (23)

Here we show that when the interaction cell is empty and T1 and T2 are randomly assigned, the

OLS estimators based on the regression model (23) are consistent for the main effects.

Define β̂∗ = (β̂∗
0,β̂∗

1,β̂∗
2)′ and β∗ = (β∗

0,β∗
1,β∗

2)′ = E(XX ′)−1E(XY ), where X = (1,T1,T2)′.

Under standard conditions, β̂∗ p→β∗. Hence, it remains to show that β∗
1 and β∗

2 are equal to the

main effects. In what follows, we focus on β∗
1. The derivation for β∗

2 is similar. To simplify the

exposition, we define p1 =P(T1 =1), p2 =P(T2 =1), and p12 =P(T1 =1,T2 =1).

Multiplying out yields the following expressions for β∗
1:

β∗
1 = (p2p12−p1p2)E(Y )+p1(p2−p2

2)E(Y |T1 =1)+p2(p1p2−p12)E(Y |T2 =1)
−p2

1p2−p1p2
2+p1p2+2p1p2p12−p2

12
.

Using the fact that the interaction cell is empty, which implies that p12 =0, obtain

β∗
1 = −p1p2E(Y )+p1p2(1−p2)E(Y |T1 =1)+p1p

2
2E(Y |T2 =1)

−p2
1p2−p1p2

2+p1p2
. (24)

Because p12 =0, we have that

E(Y )=E(Y |T1 =1,T2 =0)p1+E(Y |T1 =0,T2 =0)(1−p1−p2)+E(Y |T1 =0,T2 =1)p2. (25)

9This exact sample split is impossible in any application since N
2

(
2−

√
2
)

is not an integer.

In our simulations we therefore use N∗
T =0.29N and N∗

1 =0.42N.
10For this comparison, we assume that both experiments are designed such that they exhibit

equal power to detect an effect of T1 and T2.
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Combining (24) and (25) and simplifying yields:

β∗
1 = E(Y |T1 =1,T2 =0)−E(Y |T1 =0,T2 =0)

The result now follows by random assignment of T1 and T2 and the definition of potential outcomes.

A.6 Bonferroni-correction with consistent model selection
In Section 4.2, we discussed a nearly optimal test that yields power improvements over the long

model t-test near a priori likely values of the interaction. Here we discuss an alternative to the

nearly optimal test: the Bonferroni approach of McCloskey (2017, 2020).

To achieve size control in the presence of model selection, one could employ tests based on

the largest critical value across all possible values of the interaction effect β12. However, this

so-called least favorable approach is known to be very conservative due to its worst case nature.

McCloskey (2017, 2020) suggests a procedure that improves upon the least favorable approach

and asymptotically controls size. The basic insight of this approach is that one can construct an

asymptotically valid confidence interval for β12. As a consequence, one can search for the largest

critical value over the values of β12 in the confidence interval rather than over the entire real line as

in the least favorable approach. The uncertainty about the nuisance parameter (β12) and the test

statistic can be accounted for using a Bonferroni-correction.

McCloskey (2017, 2020) considers both conservative and consistent model selection. Under

conservative model selection, one uses a fixed threshold to select the model irrespective of the

sample size. An example is the model selection algorithm in Section 2.5 where one employs a 5%

t-test in the first step, irrespective of the sample size. Under consistent model selection, the model

selection threshold is allowed to grow with the sample size. We explored both approaches and found

that consistent model selection leads to more powerful tests in our context. We therefore only

report results for consistent model selection. Specifically, we implement the adjusted Bonferroni

critical values outlined in Section 3.2 of McCloskey (2017) and in Section 5 of McCloskey (2020).11

11Specifically, we use the algorithm “Bonf-Adj Post-Sel” outlined in both papers. We employ

consistent model selection using the BIC criteria. We use β =0.5 which results in a=0.45,

as suggested by McCloskey (2017). To speed our simulations, we use the true OLS standard

errors (as opposed to the estimated ones).

28



Figure A.11: McCloskey (2017, 2020)’s consistent model selection exhibits small size

distortions and yields power gains over running the full model for positive values of β12
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The

size for Figures 5a and 5b is α = 0.05. Consistent MS refers to McCloskey (2017, 2020)’s

consistent model selection.

Figure A.11 reports the results of applying McCloskey (2017, 2020)’s Bonferroni-style correction

to our running example. It shows that consistent model selection with state-of-the-art Bonferroni

adjustments leads to local power improvements relative to the long model for a short range of

positive values of the interaction effect β12. However, unlike the nearly optimal test discussed in

Section 4.2, researchers cannot choose where those power gains occur.

As expected, these power improvements come at the cost of much lower power for other

values of β12. While the Bonferroni-correction asymptotically controls size for all values of the

interaction, we find some small size distortions in our simulations. Appendix A.7.7 provides a more

comprehensive assessment of the performance by plotting power curves for different values of β1.
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A.7 Additional figures and tables

Table A.6: Articles published in top-5 journals between 2007 and 2017

AER ECMA JPE QJE ReStud Total

Other 1218 678 367 445 563 3271

Field experiment 43 9 14 45 13 124

Lab experiment 61 16 5 10 18 110

Total 1322 703 386 500 594 3505
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A.7.1 Ignoring the interaction

Figure A.12: Long and short model: Power curves
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The

size across all figures is α = 0.05. In each figure, dashed lines show the power for the long

model, while solid lines show power for the short model.
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A.7.2 Model selection (pre-testing)

Figure A.13: Long model and model selection: Power curves
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The

size across all figures is α = 0.05. In each figure, dashed lines show the power for the long

model, while solid lines show power for model selection.
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A.7.3 Elliott et al. (2015a)’s nearly optimal test

Figure A.14: Long model and Elliott et al. (2015a)’s nearly optimal test: Power curves
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The

size across all figures is α = 0.05. In each figure, dashed lines show the power for the long

model, while solid lines show power for Elliott et al. (2015a)’s nearly optimal test.
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A.7.4 Restrictions on the magnitude of β12: Armstrong et al. (2020)

Figure A.15: Long model and Armstrong et al. (2020)’s approach: Power curves
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The

size across all figures is α = 0.05. In each figure, dashed lines show the power for the long

model, while solid lines show power for Armstrong et al. (2020)’s approach based on restrictions

on the magnitude of β12.
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A.7.5 Restrictions on the magnitude of β12: Imbens & Manski (2004) and Stoye

(2009)

Figure A.16: Long model and Imbens & Manski (2004) and Stoye (2009)’s approach:

Power curves
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The

size across all figures is α = 0.05. In each figure, dashed lines show the power for the long

model, while solid lines show power for Imbens & Manski (2004) and Stoye (2009)’s approach

based on restrictions on the magnitude of β12.
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A.7.6 Leaving the interaction cell empty

Figure A.17: Long model and leaving the interaction cell empty: Power curves
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The

size across all figures is α=0.05. In each figure, dashed lines show the power for the long model,

while solid lines show power a design with the same sample size but leaving the interaction cell

empty.
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A.7.7 McCloskey (2017, 2020)’s consistent model selection with Bonferroni-type

correction

Figure A.18: Long model and McCloskey (2017, 2020)’s consistent model selection with

Bonferroni-type correction: Power curves
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Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The

size across all figures is α = 0.05. In each figure, dashed lines show the power for the long

model, while solid lines show power for McCloskey (2017, 2020)’s consistent model selection

with Bonferroni-type correction.
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A.7.8 Comparison across methods

Figure A.19: No factorial design: Size and power
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1 =0.42N. The size across all figures is α=0.05.
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