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Abstract

This paper highlights a common issue with instrumental variables (IV) techniques in evaluating the

impact of air pollution on health. Since pollutants are almost always produced alongside other pollutants,

instrumenting a single endogenous pollutant requires additional assumptions for correct inference and

interpretation. We clarify these assumptions and propose that researchers place more structure on the

relationship between the instrument and all the relevant pollutants.
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1 Introduction

Instrumental variable (IV) methods are frequently used to estimate causal effects in economics. In particular,

air pollution and its effect on health is an area of research in which the use of IV methods is widespread. In

this paper, we search the literature that uses IV methods to assess the impact of atmospheric air pollution on

health outcomes and point out an important but largely unemphasized assumption implicit in most of these

papers. The basis of this paper is simple: while instruments are often used to create plausibly exogenous

variation in single pollutants, pollutants are generally co-produced. Hence, IV models treating a single

pollutant as endogenous will yield biased estimates. The direction of bias depends on how co-pollutants

interact with each other and with the instrument. In some cases, it is impossible to assess whether biased

IV estimates are closer to the true parameters than OLS estimates.

We conducted a systematic search to identify all published literature on air pollution and health using

IV methods through April 2017. Our goal was to illustrate the variety of studies conducted in this area

and to highlight how exclusion criteria violations may occur.1 We searched keywords, titles, and abstracts

in PubMed, Elsevier, Embase, and Web of Science.2 The boolean search used was: (“air pollution” OR

“air quality”) AND “instrumental variable*” AND (health OR mortality OR morbidity OR hospital* OR

emergency).3. Twenty-five studies fulfilled the inclusion criteria (see Panel A, Table 1), although only a

fraction of them (n=8) were relevant for the issues considered in this paper. Table 2 lists the non-relevant

studies. In Panel B, we show other articles that, based on our knowledge of the field, use IV methods to

examine the causal effect of air pollution on health. The papers in Panel B are a selective subsample of a

broader set of papers that may exist in this area. Combining the “relevant” papers from Panel A and the

papers in Panel B, we examine a total of 20 papers.

IV methods are rather recent in this space (the earliest relevant study in our sample is from 2003). We

categorize the types of IVs used in three groups: 1) IVs related to regulatory or economic shocks(Bombardini

& Li, 2016; Chay & Greenstone, 2003b; Deschenes et al., 2012; Lagravinese et al., 2014). Some studies

used geographical variations in regulation (Chay et al., 2003; Chay & Greenstone, 2003a; Gutierrez, 2015;

1The search was conducted on May 1, 2017.
2We did not use Google Scholar because its search function is limited to either the title or the entire body; it does not allow

for abstract searches.
3For PubMed the exact search was: (((instrumental variable*[Title/Abstract]) AND (Air quality[Title/Abstract] OR

Air pollution[Title/Abstract])) AND (health [Title/Abstract] OR mortality[Title/Abstract] OR morbidity OR hospi-
tal*[Title/Abstract] OR emergency[Title/Abstract])). For Eslevier it was: title-abs-key(instrumental variable*) AND (title-
abs-key(Air quality) OR title-abs-key(Air pollution)) AND (title-abs-key(health) OR title-abs-key(mortality) OR title-abs-
key(morbidity) OR title-abs-key(hospital*) OR title-abs-key(emergency)). For Embase it was: ’instrumental variable*’:ab,ti
AND (’air quality’:ab,ti OR ’air pollution’:ab,ti) AND (’health’:ab,ti OR ’mortality’:ab,ti OR ’morbidity’:ab,ti OR ’hospi-
tal*’:ab,ti OR ’emergency’:ab,ti). For Web of Science it was: TS=(”instrumental variable*”) AND (TS=(”Air quality”) OR
TS=(”Air pollution”)) AND TS=(health OR mortality OR morbidity OR hospital* OR emergency).
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Table 1: Summary table of studies using IV the health effects of air pollution

Study Journal Location Health outcome Air pollutant IV used

Panel A: Relevant artciles from the systematic search

Ebenstein, Frank, and Reingew-
ertz (2015)

The Israel Medicine Asso-
ciation Journal

Israel Hospital admis-
sions

PM10 Sandstorms

Knittel, Miller, and Sanders
(2016)

Review of Economics and
Statistics

USA Infant mortality PM10,CO Fluctuations in traffic and their
interaction with local weather
conditions

Lagravinese, Moscone, Tosetti,
and Lee (2014)

Regional Science and Ur-
ban Economics

Italy Hospital admis-
sions

PM10, CO, NO2,
CO and O3

Climate conditions and human
activity (traffic congestion and
concentration of manufacturing
industries)

Moretti and Neidell (2011) Journal of Human Re-
sources

USA Hospital admis-
sions

O3, NO2 and CO Boat traffic into the two major
ports of Los Angeles

Schlenker and Walker (2016) Review of Economic Stud-
ies

USA Hospital admis-
sions

CO Variation in airport congestion
on the East Coast

Schwartz, Austin, Bind,
Zanobetti, and Koutrakis
(2015)

American Journal of Epi-
demiology

USA Total mortality PM 2.5 Back trajectories of air masses

Schwartz, Bind, and Koutrakis
(2017)

Environmental Health
Perspectives

USA Total mortality PM2.5, BC, and
NO2

Combined height of the plane-
tary boundary layer and wind
speed

Tonne et al. (2010) Occupational and Envi-
ronmental Medicine

England Hospital admis-
sions

NO(x) Indicator for congestion charging
zone

Panel B: Other studies

Arceo-Gomez, Hanna, and Oliva
(in press)

The Economic Journal Mexico Infant mortality PM10 & CO Meteorological thermal inver-
sions

Bombardini and Li (2016) Working Paper China Infant mortality SO2 Export shocks
Chay and Greenstone (2003b) Quarterly Journal of Eco-

nomics
USA Infant mortality TSP Income shocks

Chay and Greenstone (2003a) Working Paper USA Infant mortality TSP Regulatory nonattainment sta-
tus

Chay, Dobkin, and Greenstone
(2003)

The Journal of Risk and
Uncertainty

USA Adult mortality TSP Regulatory nonattainment sta-
tus

Deryugina, Heutel, Miller, Moli-
tor, and Reif (2016)

Working Paper USA Mortality, hospital-
ization rate, and to-
tal hospital spend-
ing

PM 2.5 Changes in the local wind direc-
tion

Deschenes, Greenstone, and
Shapiro (2012)

Working Paper USA Mortality and hos-
pital admissions

PM 2.5, O3, SO2,
and CO2

Emissions cap and trade market

Gutierrez (2015) Journal of Population
Economics

Mexico Infant mortality Aerosol Optical
Depth (AOD)

Power plants in operation

He, Fan, and Zhou (2016) Journal of Environmental
Economics and Manage-
ment

China Total mortality PM10 Olympic Games air pollution
regulation

Jayachandran (2009) Journal of Human Re-
sources

Indonesia Infant mortality Satellite based O3 Wildfire smoke

Luechinger (2014) Journal of Health Eco-
nomics

Germany Infant mortality SO2 Regulatory desulfurization at
power plants, power plants’ lo-
cation and prevailing wind direc-
tion

Zhong (2015) Working Paper China Hospital admis-
sions

NO2 Driving restrictions and supersti-
tions concerning the number 4
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Luechinger, 2014) and one study took advantage of air pollution regulations in Beijing during the 2008

Olympic Games (He et al., 2016). 2) IVs related to variations in road, port, and airport traffic flows (Knittel

et al., 2016; Moretti & Neidell, 2011; Schwartz et al., 2015; Zhong, 2015). 3) IVs related to meteorological

or other exogenous environmental events, like thermal inversions (Arceo-Gomez et al., in press), changes in

local wind direction (Deryugina et al., 2016), smoke from wildfires (Jayachandran, 2009) or back trajectories

of air masses (Schwartz et al., 2015) as IVs. One study used a combination of the three types of IV described

above (Lagravinese et al., 2014).

As mentioned earlier, we want to highlight a particular violation of the exclusion restriction that is likely

to occur in settings where the exposure or treatment is an aggregate variable such as air pollution (e.g.,

PM10 and CO) and the chosen IV (e.g., thermal inversions) affects this aggregate variable but the researcher

only observes a part of what makes up overall air pollution. The converse, where the parameter of interest

is the impact of a specific component of an aggregate variable (PM10, rather than overall pollution) but

the instrument affects the aggregate variable (pollution), is another form of the same exclusion restriction

violation. Some of the papers identified in Table 1 address the issue we highlight in this paper (Deryugina

et al., 2016; Moretti & Neidell, 2011; Zhong, 2015). Deschenes et al. (2012) even acknowledge the possibility

of violating the exclusion restriction (p. 16-17) by including various pollutants affected by a common IV.4

2 The basic IV setting

To fix ideas, suppose we want to measure the effect of pollution on a health outcome (y) and that the true

relationship between the two is:

y = x1β1 + x2β2 + ε, (1)

where x1 is one component of pollution (e.g., PM10), and x2 is another component of pollution (e.g.,

CO2). For ease of exposition and without loss of generality, assume all variables have been standardized

such that V (X1) = V (x2) = V (ε) = 1.

Additionally, assume cov(x1, ε) 6= 0, so that x1 is endogenous. Suppose the statistician only observes x1.

If the statistician were to estimate the following regression

y = x1β1 + η (2)

4The authors of two studies claim to have met this exclusion restriction (Knittel et al., 2016; Schwartz et al., 2015).
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where η = x2β2 + ε then

β̂ols1 = (x′1x1)−1x′1y

→p V (x1)−1cov(x1, y)

= β1 + V (x1)−1cov(x1, x2)β2 + V (x1)−1cov(x1, ε)

= β1 + ρx1,x2
β2 + ρx1,ε

If cov(x1, ε) = 0 and cov(x1, x2) = 0 then βols is consistent.5 If either cov(x1, x2) 6= 0 or cov(x1, ε) 6= 0

then the OLS estimator of β1 will be asymptotically biased.

Assume we have an instrument z, such that cov(z, ε) = 0 and cov(z, x1) 6= 0. Then the IV estimate of

β1 is

β̂iv1 = (z′x1)−1z′y

→p cov(z, x1)−1cov(z, y)

= β1 + cov(z, x1)−1cov(z, x2)β2

= β1 + ρ−1z,x1
ρz,x2β2

Going from OLS to IV eliminates the bias term caused by the “direct” endogeneity of x1 (ρx1,εσε) and the

“indirect” biased term caused by the correlation of x1 and x2 (β2ρx1,x2
), but introduces another “indirect”

biased caused by the correlation between the instrument and x2 (β2ρ
−1
z,x1

ρz,x2β2). This is not an omitted-

variable problem: If x2 is observable, then both OLS and IV may be biased (i.e., ontrolling for pollutants

does not solve the problem if the instrument is correlated with these pollutants).6

The IV estimate will be consistent as long as cov(z, x2) = 0 and cov(z, x1) 6= 0. The instrument can only

be correlated with the component of pollution we observe. If the instrument is correlated with any other

component of pollution, then the estimate may be biased. For example, suppose we observe PM10 and want

5This is different from the standard measurement error problem.
6In this case

β̂ols →p β1 + ρx1,ε

β̂iv →p β1 + ρ−1
z,x1

ρz,x2β2
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to use an instrument (such as thermal inversions, driving restrictions, or environmental regulations) to study

the effect of PM10 on health. In that case, our estimate of β1 will not be consistent if our instrument affects

other non-observable components of pollution such as SO2 (i.e., cov(z, x2) = 0) and if that component of

pollution affects health (i.e., β2 6= 0). We provide a more general framework in Appendix A.

2.1 Results

Based on results in the previous section, some (intuitive) observations immediately arise:

1. If β2 = 0 (i.e., if the other pollutant has no effect on health) then IV is consistent .

2. If cov(z, x2) = 0 (i.e., the instrument only impacts health through PM10) then IV is consistent.

One could either assume β2 = 0 or cov(z, x2) = 0 while using IV methods to assess the impact of air

pollution on health (only one of these assumptions is needed). However, neither assumption is realistic in

many settings. For example, cars emit hundreds of volatile organic compounds (VOCs) (Caplain et al.,

2006). Thus, using driving restrictions as an instrument for any particular pollutant would lead to biased

estimates.

In terms of reducing bias, is IV better than OLS? Intuitively, if β2 is relatively small, then the “indirect”

bias is relatively small for both OLS and IV. Assume without loss of generality that β1 > 0, ρx1,x2
> 0 and

ρz,x1 > 0. Then:

Lemma 1. If ρz,x2
≥ 0 and ρx1,ε ≥ 0, then

ρx1,x2
> ρ−1z,x1

ρz,x2

is a sufficient condition for

Bias(β̂iv) < Bias(β̂ols)

where Bias refers to the difference between the probability limit of the estimator and the true value. Proof

of Lemma 1 is the Appendix C

To assess whether IV “perform better” than OLS, we need assumptions on: 1) the correlation between

the endogenous pollutant and the error term; 2) the correlation between the measured pollutant and its

unmeasured counterparts; and 3) the ratio of the correlation between the instrument and the various pol-

lutants. For example, if the correlation between the instrument and various pollutants is the same, then it
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would be unfeasible for the bias in IV to be less than the bias in OLS (since ρx1,x2 < 1). If the instrument is

mostly correlated with a specific pollutant, then ρ−1z,x1
ρz,x2

is small, and Lemma 1 is likely to hold, implying

that IV perform better than OLS. In general, authors should be specific about their assumptions on the

pollution production function and how their chosen instrument affects individual pollutants.

2.2 Case study

To showcase the problem’s extent, we estimate the bias from both OLS and IV in one setting based on

Schlenker and Walker (2016). Schlenker and Walker (2016) study the effect of pollution on hospitalization

rates for asthma by using flight delays originating in the eastern US to instrument air pollution daily

variation near airports in California. They focus on CO and NO2 since airports are a major source of these

two pollutants. These two pollutants are highly correlated (see Panel A in Table 3 in Appendix C), even

after controlling for a rich set of weather and seasonal controls (see Panel B in Table 3 in Appendix C). The

instrument (taxi time at an airport in the eastern US) is correlated with both pollutants. The authors of

the study are aware of this: “Since various pollutants are often correlated with one another, these estimates

should be interpreted with caution, as the pollutant of interest will proxy for other correlated air pollutants.”

The authors overcome this problem by using wind speed and wind direction interacted with taxi time as

additional sources of exogenous variation.

Using all three sources of exogenous variation, an increase of 1 ppb of CO and NO2 increases asthma

rates (per 10 million people) by 0.222 (p-value<0.01) and -2.2 (p-value>0.1) (see Table 5 in Schlenker and

Walker (2016)). Had Schlenker and Walker (2016) ignored that these pollutants are correlated, an increase of

1 ppb of CO and NO2 would be (wrongly) associated with increases in asthma rates (per 10 million people)

of 0.194 (p-value<0.01) and 12.4 (p-value<0.01) (see Table 4 in Schlenker and Walker (2016)). Considering

both pollutants to be endogenous did not change the magnitude of the effect of CO but makes a significant

difference for NO2.

3 Discussion

While instrumental variables are often used to create exogenous variation in single pollutants, pollutants are

generally co-produced and any instrument that affects one component of pollution (e.g., PM10) is likely to

affect other pollutants not considered in the analysis (e.g., SO2). If pollutants are co-produced, IV models

that treat a single pollutant as endogenous will yield biased estimates. We encourage researchers to place
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more structure on the relationship between instruments and pollutants while interpreting estimates from IV

models in the context of air quality and health.
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A A more general case

Suppose the true underlying model is the following:

y =

N∑
k=1

xkβk + ε (3)

and that cov(x1, ε) 6= 0, so that x1 is endogenous. Additionally, suppose we have an instrument z such

that cov(z, ε) = 0 and cov(z, x1) 6= 0. Finally, suppose the statistician only observes x1.

Then the OLS estimate of β1 is

β̂ols = (x′1x1)−1x′1y

→p V (x1)−1cov(x1, y)

=

K∑
k=1

[
V (x1)−1cov(x1, xk)βk

]
+ V (x1)−1cov(x1, ε)

= β1 +

K∑
k=2

βkV (x1)−1cov(x1, xk) + V (x1)−1cov(x1, ε)
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and the IV estimate of β1 is

β̂iv = (z′x1)−1z′y

→p cov(z, x1)−1cov(z, y)

=

K∑
k=1

cov(z, x1)−1cov(z, xk)βk + cov(z, x1)−1cov(z, ε)

= β1 +

K∑
k=2

βkcov(z, x1)−1cov(z, xk)

Assuming, without loss of generality, that σk = 1 for all k and that σε = 1, then

β̂ols →p β1 +

K∑
k=2

βkρx1,xk
+ ρx1,ε

β̂iv →p β1 +

K∑
k=2

βkρ
−1
z,x1

ρz,xk

Thus, going from OLS to IV one eliminates the bias term caused by the “direct” endogeneity of x1 (ρx1,ε).

But introduces an“indirect” biased term caused by the correlation of x1 and xk (
∑K
k=2 βkρx1,xk

) and the

correlation between the instrument and xk (
∑K
k=2 βkρ

−1
z,x1

ρz,xk
).

B Proof of Lemma 1 and some corollaries

Proof of Lemma 1 in the general setting. Suppose the true underlying model is the following:

y =

N∑
k=1

xkβk + ε (4)

and that cov(x1, ε) 6= 0, so that x1 is endogenous. Additionally, suppose we have an instrument z such

that cov(z, ε) = 0 and cov(z, x1) 6= 0. Finally, suppose the statistician only observes x1.

Assuming, without loss of generality, that σk = 1 for all k, σε = 1, β1 ≥ 0, ρx1,xk
> 0 for all k, and

ρz,x1
> 0.

12



From σk = 1 for all k and σε = 1:

Bias(βols) →p

K∑
k=2

βkρx1,xk
+ ρx1,ε

Bias(βiv) →p

K∑
k=2

βkρ
−1
z,x1

ρz,xk

Additionally, assume that βk > 0 for all k, ρz,xk
≥ 0 for all k, ρx1,ε ≥ 0, and ρx1,xk

> ρ−1z,x1
ρz,xk

for all k.

Then it follows that:

ρx1,xk
> ρ−1z,x1

ρz,xk

K∑
k=2

βkρx1,xk
>

K∑
k=2

βkρ
−1ρz,xk
z,x1

K∑
k=2

βkρx1,xk
+ ρx1,ε >

K∑
k=2

βkρ
−1
z,x1

ρz,xk

|
K∑
k=2

βkρx1,xk
+ ρx1,ε| > |

K∑
k=2

βkρ
−1
z,x1

ρz,xk
|

|Bias(βols)| > |Bias(βiv)|

Bias(βols) > Bias(βiv)

Two immediate corollaries that can be proved in an almost identical manner are:

Corollary 1. If βk > 0 for all k, ρz,xk
> 0 for all k, ρx1,ε < 0, and ρ−1z,x1

ρz,xk
> ρx1,xk

for all k, then

β̂iv > β̂ols

Corollary 2. If βk > 0 for all k, ρz,xk
> 0 for all k, ρx1,ε > 0, and ρ−1z,x1

ρz,xk
< ρx1,xk

for all k, then

β̂iv < β̂ols
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Table 2: Non-relevant research articles found in the systematic search

Study Journal

Agrawal and Yamamoto (2015) Indoor Air
Ambrey and Fleming (2014) Economics Letters
Bilger and Carrieri (2013) Journal of Health Economics
Brown (2013) Applied Economics
Ho and Hite (2009) Journal of Community Health
Howley (2017) Journal of Economic Behavior & Organization
Jones (2007) Health economics
Mullahy and Portney (1990) Journal of Health Economics
Nordberg, Filipsson, Gustafsson, Harland, and Roos (2001) Journal of Sea Research
Pant (2013) Respirology
Saha, Pattanayak, Sills, and Singha (2011) Health & Place
Schennach (2013) Annals of Statistics
Sim, Suryadarma, and Suryahadi (2017) World Development
Strand, Sillau, Grunwald, and Rabinovitch (2015) Environmetrics
Weldesilassie, Boelee, Drechsel, and Dabbert (2011) Environment and Development Economics
Zaman and el Moemen (2017) Renewable and Sustainable Energy Reviews
Zivin and Neidell (2014) Encyclopedia of Health Economics
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C Extra tables

Table 3: Correlation between pollutants and IV in Schlenker and Walker (2016)
Panel A: Unconditional correlation

Taxi time CO NO2

Taxi time 1

CO 0.105∗∗∗ 1

NO2 0.0305∗∗∗ 0.798∗∗∗ 1

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B: Conditional correlation

Taxi time CO NO2

Taxi time 1

CO -0.0118∗∗∗ 1

NO2 -0.0103∗∗∗ 0.583∗∗∗ 1

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Correlations are based on the supplementary

material data provided by Schlenker and Walker

(2016). Panel A shows the raw correlation,

while Panel B shows the conditional correlation

after controlling for weather and seasonal con-

trols.
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