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FACTORIAL DESIGNS, MODEL SELECTION, AND (INCORRECT)
INFERENCE IN RANDOMIZED EXPERIMENTS

Karthik Muralidharan, Mauricio Romero, and Kaspar Wüthrich*

Abstract—Factorial designs are widely used to study multiple treatments in
one experiment. Although t-tests using a fully saturated “long” model pro-
vide valid inferences, “short” model t-tests (that ignore interactions) yield
higher power if interactions are zero, but incorrect inferences otherwise. Of
27 factorial experiments published in top-five journals (2007–2017), nine-
teen use the short model. After including interactions, more than half of
their results lose significance. Based on recent econometric advances, we
show that power improvements over the long model are possible. We pro-
vide practical guidance for the design of new experiments and the analysis
of completed experiments.

I. Introduction

CROSS-CUTTING or factorial designs are widely used
in field experiments. For example, 27 out of 124 field

experiments published in top-five economics journals dur-
ing 2007–2017 use cross-cutting designs. One rationale is
that the power for detecting main treatment effects is higher
if interactions between treatments are ignored in estimation
and inference (with the implicit assumption that interactions
are zero or negligible). This can make factorial designs a
cost-effective way of studying multiple treatments.1 A sec-
ond rationale is to “explore” if there are meaningful interac-
tions across treatments. This paper is motivated by the ob-
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1As Kremer (2003) puts it: “Conducting a series of evaluations in the
same area allows substantial cost savings…. Since data collection is the
most costly element of these evaluations, cross-cutting the sample reduces
costs dramatically…. This tactic can be problematic, however, if there are
significant interactions between programs.”

servation that both of these rationales can be problematic in
practice.

To fix ideas, consider a setup with two randomly assigned
binary treatments. The researcher can estimate either a fully
saturated “long” model (with dummies for both treatments
and their interaction) or a “short” model (only including
dummies for both treatments). The long model yields consis-
tent estimators for the main treatment effects of both treat-
ments and is always correct for inference regardless of the
true value of the interaction effect. However, if the true value
of the interaction effect is zero, the short model yields con-
sistent estimators and has greater power for conducting in-
ference on the main effects.

The power gains from the short model, however, come
at the cost of an increased likelihood of incorrect inference
relative to a business-as-usual counterfactual (defined as
outcomes in a pure experimental control group) if the in-
teraction effect is not zero. Out of 27 field experiments
published in top-five economics journals during 2007–2017
using cross-cutting designs, nineteen (over 70%) do not in-
clude all interaction terms in the main specifications. We re-
analyzed the data from these papers by also including the
interaction terms.2 Doing so has nontrivial implications for
inference on the main treatment effects. The median ab-
solute value of the change in the point estimates is 96%,
about 26% of estimates change sign, and 53% (29 out of
55) of estimates reported to be significant at the 5% level
are no longer so after including interactions. Even if we
reanalyze only “policy” experiments, 32% of the estimates
(six out of nineteen) are no longer significant after including
interactions.3

In practice, researchers often estimate the long model
first and test if the interaction is significant, and then fo-
cus on the short model if they do not reject that the interac-
tion is zero. However, such data-dependent model selection
leads to invalid inferences (Leeb & Pötscher, 2005, 2006,
2008; Kahan, 2013) and should thus be avoided. Further,

2The full list of 27 papers is in table A1. We reanalyzed fifteen out of the
nineteen that do not include all interactions in the main specification. The
other four papers did not have publicly accessible data.

3We define a policy experiment as one which studies a program or in-
tervention that could be scaled up, as opposed to a conceptual experiment,
which aims to test for the existence of facts or concepts such as discrimi-
nation (e.g., résumé audit experiments).
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cross-cutting experiments are rarely adequately powered to
detect meaningful interactions (see section IIF). Thus, this
two-step procedure will almost always fail to reject that the
interaction term is zero, even when it is different from zero.
As a result, the rate of incorrect inference using this two-step
model-selection procedure will continue to be nearly as high
as that from just running the short model.

The lack of power to detect interactions combined with
a focus on statistical significance also makes it challenging
to use factorial designs to “explore” whether interactions
are meaningful. The interaction estimator’s variance is al-
ways larger than that of the main effects estimators, making
the sample size requirements for detecting interactions much
more onerous.4 This leads to most factorial experiments be-
ing underpowered to detect interactions. As a result, point
estimates of interactions will on average substantially over-
state the true effect, conditional on being significant. This
problem has been referred to by Gelman and Carlin (2014)
as Type-M error.

Textbook treatments of factorial designs (Cochran & Cox,
1957; Gerber & Green, 2012) and guides to practice (Kre-
mer, 2003; Duflo et al., 2007) are careful to clarify that treat-
ment effects using the short model should be interpreted
as either (a) being conditional on the distribution of the
other treatment arms in the experiment or (b) as a compos-
ite treatment effect that includes a weighted-average of the
interactions with other treatments. However, as we argue in
section IIC, this weighted average is a somewhat arbitrary
construct, can be difficult to interpret in high-dimensional
factorial designs, and is typically neither of primary aca-
demic interest nor policy-relevant. Consistent with this view,
none of the nineteen experimental papers that focus on the
short model motivate their experiment as being about esti-
mating a weighted-average treatment effect.

The status quo of focusing on the short model is prob-
lematic for at least three reasons. First, ignoring interactions
affects internal validity against a “business-as-usual” coun-
terfactual. If the interventions studied are new, the other pro-
grams may not even exist in the study population. Even if
they do, there is no reason to believe that the distributions
in the population mirror those in the experiment. Thus, to
the extent that estimation and inference of treatment effects
depend on what other interventions are being studied in the
same experiment, ignoring interactions is a threat to internal
validity.

Second, “absence of evidence” of significant interactions
may be erroneously interpreted as “evidence of absence.”
The view that interactions are second order (as implied when
papers only present the short model) may have been influ-
enced partly by the lack of evidence of significant interac-
tions in most experiments to date. However, as we show
in section IIF, this is at least partly because few experi-

4For example, one would need an eight times larger sample to detect an
interaction than to detect a main effect when the interaction is half the size
of the main effect; see section IIF and appendix A.3.

ments are adequately powered to detect meaningful inter-
actions. There is now both experimental (Duflo et al., 2015;
Mbiti et al., 2019) and nonexperimental (Kerwin & Thorn-
ton, 2021; Gilligan et al., 2022) evidence that interactions
matter. Indeed, a long tradition in development economics
has highlighted the importance of complementarities across
programs in alleviating poverty traps (Ray, 1998; Banerjee
& Duflo, 2005), which suggests that assuming away interac-
tions in empirical work may be a mistake.

Third, there is well-documented publication bias toward
significant findings (e.g., Franco et al., 2014; Andrews &
Kasy, 2018; Christensen & Miguel, 2018; Abadie, 2020).
This can also affect evidence aggregation because meta-
analyses and evidence reviews often include only published
studies. Thus, the sensitivity of the significance of main ef-
fect estimates to the inclusion/exclusion of interaction terms
(which we document in this paper) is likely to have nontriv-
ial implications for how evidence is published, summarized,
and translated into policy.

Having documented the limitations of the short model, we
consider if it is possible to improve power relative to the
long model while maintaining size control for relevant val-
ues of the interactions. The two-sided long model t-test is the
uniformly most powerful unbiased test (e.g., van der Vaart,
1998; Elliott et al., 2015a). This result implies that if one in-
sists on size control for all values of the interaction effect,
any procedure that is more powerful than the t-test for some
values of the interactions must have lower power somewhere
else. This classical result motivates imposing restrictions on
the interaction effects based on prior knowledge to improve
power. We explore three different approaches.5

The first approach, based on Elliott et al. (2015a), is a
nearly optimal test that targets power toward an a priori
likely value of the interaction (e.g., a value of zero), while
controlling size for all values of the interaction. This ap-
proach comes close to achieving the maximal theoretically
possible power near the likely value of the interaction but
exhibits lower power than the long model t-test farther away.
We then consider two approaches based on Armstrong et al.
(2020) and Imbens and Manski (2004) for constructing con-
fidence intervals for the main effects under restrictions on
the magnitude of the interactions based on prior knowledge.
When the prior knowledge is correct, these approaches con-
trol size and yield substantial power gains relative to the long
model t-tests. However, these power gains come at the cost
of size distortions if the prior knowledge is incorrect.

Based on the analysis above, we recommend—in the in-
terest of transparency—that factorial experiments report re-
sults from the long regression model (even if only in an
appendix). Long model t-tests are easy to compute even
in complicated factorial designs and have appealing op-
timality properties. Further, the justification for omitting

5In appendix A.6, we explore a fourth approach based on McCloskey
(2017, 2020), which is based on a Bonferroni-type correction after consis-
tent model selection.
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interactions should not be that these were not significant in
the long model (because of the model selection issue dis-
cussed above). Rather, if researchers would like to focus on
results from the short model, they should clearly indicate that
treatment effects should be interpreted as composite effects
that include a weighted average of interactions with other
treatments (and specify the estimand of interest in a preanal-
ysis plan). This will enable readers to assess the extent to
which other treatments may be typical background factors
that can be ignored.

For the design of new experiments, if the primary param-
eters of interest are the main effects, a natural alternative
is to leave the “interaction cells” empty and increase the
number of units assigned to the main treatment(s) or the con-
trol group. Our simulations show that this design-based ap-
proach yields more power gains than the econometric meth-
ods discussed above for most of the relevant values of the
interaction.

Reviewing classic texts on experimental design, we iden-
tify four cases where factorial designs and analyses of the
short model may be appropriate. The first is where the goal is
to explore several treatments efficiently to identify promis-
ing interventions for further testing (e.g., Cochran & Cox,
1957). However, most policy experiments are run only once,
making factorial designs and short model estimates less
desirable.

The second is when the goal is not to test whether a given
treatment has a “significant” effect, but to minimize mean
squared error (MSE) criteria (or other loss functions) involv-
ing a bias-variance trade-off in estimating the main effects
(e.g., Blair et al., 2019). However, a key rationale for ex-
perimental evaluations of policies and programs is to gener-
ate unbiased estimates, making the bias in the short model
unattractive.

The third is to improve external validity. Cochran and Cox
(1957, p. 152) recommend bringing in subsidiary factors into
factorial designs to test main effects over a wide range of
conditions; also see Fisher (1992). Thus, factorial designs
and analyses of the short model may be fine when one di-
mension of the experiment is studying reasonable variants
of the main treatment, but less so when all treatments are of
primary interest.

The fourth is the case of conceptual (as opposed to policy)
experiments, such as résumé audit studies, where many of
the characteristics that are randomized (such as age, educa-
tion, race, and gender) do exist in the population. When fea-
sible, we recommend having the treatment share of various
characteristics being studied be the same as their population
proportion. Doing so will make the short-model coefficient
more likely to approximate a population relevant parameter
of interest. We discuss each of these four rationales along
with relevant examples in section V.

Our first contribution is to the literature on the design of
field experiments. Bruhn and McKenzie (2009), List et al.
(2011), and Athey and Imbens (2017) provide guidance on
the design of field experiments, but do not discuss when and

when not to implement factorial designs. Duflo et al. (2007,
p. 3932) implicitly endorse the use of factorial designs by
noting that they “[have] proved very important in allowing
for the recent wave of randomized evaluations in develop-
ment economics.”

Our reanalysis of existing experiments as well as simula-
tions suggest that there is no free lunch. The perceived gains
in power and cost effectiveness from factorial designs come
at the cost of not controlling size and an increased rate of
false positives relative to a business-as-usual counterfactual.
Alternatively, they come at the cost of a more complicated
interpretation of the main results as a weighted-average of
interactions with other treatments that may not represent a
typical counterfactual. Further, using underpowered facto-
rial designs to explore whether interactions are significant
comes at the risk of overestimating the true effect, condi-
tional on rejecting the null of no effect.

We also contribute to the literature that aims to improve
the analysis of field experiments (e.g., Young, 2018; List
et al., 2019). Our paper follows in this tradition by docu-
menting a problem with the status quo, quantifying its im-
portance, and identifying the most relevant recent advances
in theoretical econometrics that can mitigate the problem.
Specifically, we show that the econometric analysis of non-
standard inference problems can improve inference in facto-
rial designs which are ubiquitous in field experiments.

Finally, we contribute to the literature on the pitfalls of
focusing on statistical significance in applied work (e.g.,
Brodeur et al., 2016; Wasserstein & Lazar, 2016; Amrhein
et al., 2019; Wasserstein et al., 2019; Brodeur et al., 2020).
Specifically, the problems we highlight in this paper are less
due to factorial designs per se. Rather they stem from the
combination of a focus on statistical significance to assess if
effects are meaningful, and most factorial experiments being
under-powered to detect interactions.

II. Factorial Designs in Theory

A. Setup

This section discusses theoretical aspects of experiments
with factorial (or “cross-cut”) designs. We focus on facto-
rial designs with two treatments, T1 and T2, (“2×2 designs”),
where researchers randomly assign some subjects to receive
treatment T1, some subject to receive treatment T2, and some
subjects to receive both treatments (see table 1). The analy-
sis straightforwardly extends to cross-cut designs with more
than two treatments.

TABLE 1.—2×2 FACTORIAL DESIGN

T1

No Yes

T2 No N1 N2
Yes N3 N4

Nj is the number of individuals randomly assigned to cell j.
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We are interested in the causal effect of T1 and T2 on
an outcome Y . We use the potential outcomes framework
(Rubin, 1974). The potential outcomes {Yt1,t2} are indexed by
both treatments, T1 = t1 and T2 = t2, and are related to the
observed outcome as Y = ∑

t1∈{0,1}
∑

t2∈{0,1} 1(T1 = t1, T2 =
t2) · Yt1,t2 . We assume that both treatments are randomly as-
signed and independent of each other, which is common in
practice (e.g., Olken, 2007; Bertrand et al., 2010).

B. Long and Short Regression Models

Researchers analyzing experiments based on cross-cut de-
signs typically consider one of the following two population
regression models:

Long (or fully saturated) model:

Y = β0 + β1T1 + β2T2 + β12T1T2 + ε (1)

Short model:

Y = βs
0 + βs

1T1 + βs
2T2 + εs. (2)

The long model (equation [1]) includes both treatment in-
dicators as well as their interaction, while the short model
(equation [2]) includes only the two treatment indicators.6

The population regression coefficients in the long regres-
sion model correspond to the main average treatment effects
(ATEs) of T1 and T2 against a business-as-usual counterfac-
tual (this counterfactual can also be interpreted as the out-
comes in a pure experimental control group) and the interac-
tion effect:

β1 = E (Y1,0 − Y0,0) (ATE of T1 relative to a

counterfactual where T2 = 0), (3)

β2 = E (Y0,1 − Y0,0) (ATE of T2 relative to

a counterfactual where T1 = 0), (4)

β12 = E (Y1,1 − Y0,1 − Y1,0 + Y0,0) (interaction effect).7

(5)

By contrast, the regression coefficients in the short model are

βs
1 = E (Y1,1 − Y0,1)P(T2 = 1)

+ E (Y1,0 − Y0,0)P(T2 = 0) (6)

= E (Y1,0 − Y0,0) + E (Y1,1 − Y0,1

− Y1,0 + Y0,0)P(T2 = 1), (7)

βs
2 = E (Y1,1 − Y1,0)P(T1 = 1)

6Following Angrist and Pischke (2009, chapter 3) and Hansen (2022,
chapter 2), we interpret β = (β0, β1, β2, β3)′ = E (XX ′ )−1E (XY ), where
X = (1, T1, T2, T12 )′, as the population regression coefficient (or linear pro-
jection coefficient) and ε = Y − X ′β as the population residual (or projec-
tion error). Similarly, we interpret βs = (βs

0, β
s
1, β

s
2 )′ = E (XX ′ )−1E (XY ),

where X s = (1, T1, T2 )′, and εs = Y − X sβs as the population regression
coefficient and the population residual, respectively.

7The interaction effect is the difference between the effect of jointly pro-
viding both treatments and the sum of the main effects.

+ E (Y0,1 − Y0,0)P(T1 = 0) (8)

= E (Y0,1 − Y0,0) + E (Y1,1 − Y0,1

− Y1,0 + Y0,0)P(T1 = 1). (9)

Equation (6) shows that βs
1 yields a weighted average of the

ATE of T1 relative to a counterfactual where T2 = 1 and
the ATE of T1 relative to a business-as-usual counterfac-
tual where T2 = 0. The weights, P(T2 = 1) and P(T2 = 0),
are determined by the experimental design. Alternatively, βs

1
can be written as the sum of the ATE of T1 relative to the
T2 = 0 counterfactual and the interaction effect multiplied
by P(T2 = 1) (equation [7]). Equations (8) and (9) present
the corresponding expressions for βs

2. Unless the interaction
effect is zero, βs

1 and βs
2 do not correspond to the main ef-

fects but yield composite treatment effects that are weighted
averages of ATEs relative to different counterfactuals.

Remark 1. The problem of choosing between the long
model and the short model is not unique to factorial designs
and arises in many contexts. For example, when estimating
treatment effects in observational studies, researchers need
to decide whether to include the covariates linearly or con-
sider fully interacted specifications (e.g., Angrist & Krueger,
1999; Angrist & Pischke, 2009). However, the practical im-
plications are not the same because experimental treatments
are fundamentally different in nature from standard covari-
ates, as we discuss in section IIC. The choice between the
short and the long model (with interactions between the
treatment and strata indicators) is also relevant in stratified
experiments (e.g., Imbens & Rubin, 2015; Ansel et al., 2018;
Bugni et al., 2018, 2019).

C. Long or Short Model: What Do We Care about?

Section IIB shows that the short model yields a weighted
average of treatment effects that depends on the nature and
distribution of the other treatment arms in the experiment.
This weighted average is typically neither of primary aca-
demic interest nor policy-relevant. This view is consistent
with how papers we reanalyze motivate their object of in-
terest, which is usually the main treatment effect against a
business-as-usual counterfactual. Of the nineteen papers in
table A1 in appendix A.1 that present results from the short
model without all interactions, we did not find any study that
mentioned (in the main text or a footnote) that the presented
treatment effects should be interpreted as either (a) a com-
posite effect that includes a weighted average of the interac-
tion with the other treatments or (b) being against a counter-
factual that was not business-as-usual but one that also had
the other treatments in the same experiment.

One way to make the case for the short model is to recast
the problem we identify as one of external rather than inter-
nal validity. Specifically, all experiments are carried out in
a context with several unobserved “background” covariates.
Thus, any experimental treatment effect is a weighted aver-
age of effects conditional on unobserved covariates. If the
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other experimental arms are considered analogous to unob-
served background covariates, inference on treatment effects
based on the short model can be considered internally valid.
In this view, the challenge is that the unobserved covariates
(including other treatment arms) will vary across contexts.

However, experimental treatments are fundamentally dif-
ferent from standard background covariates. They are deter-
mined by the experimenter based on research interest and
rarely represent real-world counterfactuals. In some cases,
the interventions studied are new, and the other treatments
may not even exist in the study population. Even if they
do exist, there is no reason to believe that the distributions
in the population mirror those in the experiment. Thus, we
view this issue as a challenge to internal validity. Further, pa-
pers with factorial designs often use the two-step procedure
described in section IIE and present results from the short
model after mentioning that the interactions are not signifi-
cantly different from zero (e.g., Banerjee et al., 2007; Karlan
& List, 2007). This suggests that our view that interactions
matter for internal validity is shared broadly.

Finally, even in settings where the coefficients in the short
model are of interest, they can always be constructed based
on the coefficients in the long model, but the converse is
not true. One can also use the long model to test hypothe-
ses about the coefficients in the short regression model:
H0 : βs

1 = β1 + β12P(T2 = 1) = 0. Which test is more pow-
erful depends on the relative sample size in the four experi-
mental cells.8 Unlike the short model, the long model addi-
tionally allows for testing a rich variety of hypotheses about
counterfactual effects such as H0 : β1 + β12 p = 0 for policy-
relevant values of p, which generally differ from the ex-
perimental assignment probability P(T2 = 1). For instance,
résumé audit experiments may vary characteristics such as
age, gender, race, education, and experience with the sam-
ple size allocated to various combinations of these charac-
teristics being different from their proportion in the popu-
lation. In such a case, short model estimates are difficult to
interpret, whereas estimating the long model and calculat-
ing a weighted average of main and interaction effects with
weights equal to their population proportions may yield a
more policy-relevant treatment effect.

To summarize, the long model estimates all the underlying
parameters of interest (the main effects and the interactions).
In contrast, βs

1 is rarely of interest in its own right, and even
if it is, the long model allows for estimation and inference
on βs

1 as well.

D. Inference on Main Effects

Suppose that the researcher has access to a random sample
{Yi, T1i, T2i}N

i=1. Consider the problem of testing hypotheses

8In practice, we recommend comparing both tests when doing power
calculations. If both tests have the same power, the short model is more
straightforward.

about the main effect of T1 relative to a business-as-usual
counterfactual: H0 : β1 = E (Y1,0 − Y0,0) = 0.

To illustrate, suppose the data-generating process is given
by

Yi = β0 + β1T1i + β2T2i + β12T1iT2i + εi,

εi ∼ N (0, σ2), (10)

where εi is independent of (T1i, T2i) and σ2 is
known. If the interaction effect β12 is zero, condi-
tional on {T1i, T2i}N

i=1, β̂1 ∼ N (β1, Var(β̂1)) and β̂s
1 ∼

N (β1, Var(β̂s
1)), where Var(β̂1) = σ2( 1

N1
+ 1

N2
) ≥ Var(β̂s

1) =
σ2( N1N3+N1N4+N2N3+N2N4

N1N2N3+N1N2N4+N1N3N4+N2N3N4
). As a result, the short model

t-test exhibits higher power than the long model t-test.
If, on the other hand, β12 �= 0, ignoring the interaction can

lead to substantial size distortions. To illustrate, we introduce
a simple running example. Consider a 2×2 design with a
total sample size of N = 1,000 and N1 = N2 = N3 = N4 =
250. The data are generated based on Model (10) with εi ∼
N (0, 1), T1i and T2i randomly assigned and independent of
each other, and P(T1i = 1) = P(T2i = 1) = 0.5. This design
has power 90% to detect an effect of 0.2σ (0.29σ) at the 5%
level using the short model (long model).

Figure 1 shows how power, bias, and size vary across dif-
ferent values of β12 in both the long and the short model.
When β12 = 0, the short model t-test controls size and ex-
hibits higher power than the long model t-test as discussed
before. However, these power gains come at the cost of bias
and size distortions whenever β12 �= 0. Importantly, even
modest values of |β12| lead to considerable size distortions.
For instance, |β12| > 0.1σ more than doubles the rate of false
rejection of the null (in the data we reanalyze in section IIIB,
we find that |β̂12| > 0.1σ in over 36% of cases). By con-
trast, the long model is unbiased and exhibits correct size for
all values β12. The main takeaway from figure 1 is that re-
searchers should avoid the short model for making inference
on the main effects, unless they are certain that β12 = 0.

E. Model Selection (or Pretesting) Yields Invalid Inferences

Researchers often recognize that using the short model is
only correct for inference on the main treatment effect if the
interaction is close to zero (as implied by the quote from
Kremer (2003) in the introduction). However, the problem is
that the value of the interaction is unknown ex ante. There-
fore, a common practice is to employ a data-driven two-step
procedure to determine whether to ignore the interaction:

1. Estimate the long model and test the null hypothesis
that β12 is zero (i.e., H0 : β12 = 0) using a two-sided
t-test.

2. (a) If H0 : β12 = 0 is rejected, test H0 : β1 = 0 using
the long model t-test.

(b) If H0 : β12 = 0 is not rejected, test H0 : β1 = 0
using the short model t-test.
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FIGURE 1.—THE PERCEIVED POWER GAINS FROM THE SHORT MODEL COME AT THE COST OF BIASED ESTIMATORS AND NOT CONTROLLING

SIZE UNLESS β12 IS EXACTLY EQUAL TO ZERO

Simulations are based on the running example with sample size N , normal iid errors, and 10,000 repetitions. The size for figures 1a and 1c is α = 0.05.

FIGURE 2.—MODEL SELECTION DOES NOT CONTROL SIZE

Simulations are based on the running example with sample size N , normal iid errors, and 10,000 repe-
titions. The size is α = 0.05. For the model selection, the short model is estimated if one fails to reject
β12 = 0 at the 5% level.

While seemingly attractive, such data-dependent model se-
lection leads to invalid inferences (e.g., Leeb & Pötscher,
2005, 2006, 2008; Kahan, 2013). Figure 2 shows the size
properties of the two-step model selection approach in our
running example. For reference, we also include results for
the short and long model t-tests. The main takeaway from
figure 2 is that model selection leads to incorrect inferences
and false positives for a wide range of values of β12.9 Model
selection can be particularly problematic for program eval-

9This is true even when β12 = 0 (as seen in the blue line with crosses in
figure 2) because the tests in the first and second step are not independent.

uation field experiments because they are expensive to run,
and therefore typically not adequately powered to reject that
the interactions are zero (section IIF).

The range of values for |β12| for which model selection
leads to substantial size distortions shrinks as the sample size
(and power) of the experiment increases. However, it can be
quite large in realistic settings. In our running example, with
1,000 observations one would need |β12| to be above 0.5
to avoid notable size distortions. Even with 10,000 obser-
vations, only values of |β12| above 0.2 lead to negligible size
distortions (see figure A13). The true value of the interac-
tion is unknown and likely to be in this “problematic range”
in many practical settings (see figure 3), and so we recom-
mend that researchers avoid the data-driven model-selection
approach.

Remark 2. As figure 2 shows, model selection is less of a
concern when the interactions are either zero or very large,
but is a first-order issue when interactions are in the prob-
lematic range noted above. This issue is relevant in many
settings. For instance, Banerjee et al. (2021) have proposed
a LASSO-based method for selecting and making inferences
on the most effective combination of treatments. However,
they do so by imposing the restriction that “[treatments and
their interactions] have either no effect or have sufficiently
large (positive or negative) influence on the outcomes.”10 In
other words, they avoid the problem noted above by assum-
ing that the interactions are outside the “problematic range”
in figure 2. While their goal differs from ours (making in-
ferences on the best treatment combination versus making
inferences on main and interaction effects), this example il-
lustrates the continued prevalence of model selection in the
analysis of field experiments.

10See their assumption 3 and footnote 11 for a formal statement.
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FIGURE 3.—DISTRIBUTION OF THE ESTIMATED INTERACTION EFFECTS

This figure shows the distribution of the interactions between the main treatments (N = 868 in this figure).
We trim the top and bottom 1% of the distribution. The median interaction for these papers is 0.00σ

(dashed vertical line), the median absolute value of the interaction is 0.07σ (solid vertical line), and the
median relative absolute value of the interaction with respect to the main treatment effect is 0.37. Here
6.2% of interactions are significant at the 10% level, 3.6% are significant at the 5% level, and 0.9% are
significant at the 1% level.

F. Inference on Interaction Effects

An alternative motivation for factorial designs is to learn
about interactions and jointly explore the parameter space of
main and interaction effects.

However, detecting interaction effects requires much
larger sample sizes than needed for detecting main ef-
fects. To illustrate, we compare the standard errors of
the OLS estimator of the interaction effect, β̂12, and the
main effect, β̂1. Under the assumptions in section IID, the

standard errors are SE(β̂1) = σ
√

1
N1

+ 1
N2

and SE(β̂12) =
σ
√

1
N1

+ 1
N2

+ 1
N3

+ 1
N4

. Since SE(β̂1) < SE(β̂12), the power

for detecting interaction effects is always lower than the
power for detecting main effects, and the required sample
size for detecting interaction effects is always larger than the
required sample size for detecting main effects of equal mag-
nitude. For example, we need eight times the sample size to
have the same power to detect an interaction effect as to de-
tect the main effect, when the interaction is half the size of
the main effect (see appendix A.3). Given the more onerous
sample size requirements to detect interactions relative to
main effects, it is not surprising that only a few of the inter-
action effects are significant in the reanalysis in section IIIB.

Further, even when interactions estimates are significant,
they can be misleading because significant results in under-
powered studies are much more likely to reflect an outlier
estimate of the interaction. In particular, low power is asso-

ciated with a high Type-M error (or exaggeration ratio) (Gel-
man & Carlin, 2014). The Type-M error is the expectation of
the absolute value of the estimator in a hypothetical replica-
tion study based on the same design as the original study,
conditional on being significant, divided by the true effect
(see p. 643 and figure 1 in Gelman & Carlin, 2014). For ex-
ample, if the experiment has 80% power to detect treatment
effects of 0.2σ or larger at the 5% level using the long model
and the true value of the interaction is 0.1σ, then the Type-M
error for β̂12 is ∼ 251%. That is, the estimator of the inter-
action would, on average, be over two times larger than the
true value, conditional on being significant. Figure A9 in ap-
pendix A.3 shows the relationship between the Type-M error
and the power of the experiment.

Note that using the long model to estimate and learn about
interactions is fine since the long model estimator is always
consistent and asymptotically normal, even if noisy in finite
samples. The problem we document here arises because of
the focus on statistical significance to assess whether a result
is meaningful. Combined with the well-documented pub-
lication bias toward significant results (e.g., Franco et al.,
2014; Andrews & Kasy, 2018; Christensen & Miguel, 2018;
Abadie, 2020), the discussion above suggests that published
results from under-powered studies are likely to meaning-
fully exaggerate the true effect. Following Gelman and Car-
lin (2014), we suggest studies report power to detect interac-
tions (as well as Type-M errors) in their preanalysis plan.

III. Factorial Designs in Practice

In this section, we document common practices among re-
searchers studying field experiments with factorial designs.

A. Data and Descriptive Statistics

We analyze all articles published between 2007 and 2017
in the top-five journals in economics.11 Of the 3,505 arti-
cles published in this period, 124 (3.5%) are field experi-
ments (table A6 provides more details). Factorial designs are
widely used: Among 124 field experiments 27 (22%) had a
factorial design.12 Only eight of these 27 articles with facto-
rial designs (∼30%) used the long model including all inter-
action terms as their main specification (see table 2).

11These journals are The American Economic Review, Econometrica,
The Journal of Political Economy, The Quarterly Journal of Economics,
and The Review of Economic Studies. We exclude the May issue of The
American Economic Review, known as “AER: Papers and Proceedings.”

12We do not consider two-stage randomization designs as factorial de-
signs. A two-stage randomization design is where some treatment is ran-
domly assigned in one stage. In the second stage, treatment status is reran-
domized to study behavioral changes conditional on a realization of the
previous treatment. Examples of studies with two-stage randomization de-
signs include Karlan and Zinman (2009), Ashraf et al. (2010), and Cohen
and Dupas (2010). Finally, we do not include experiments where there is
no “treatment,” but rather conditions are randomized to elicit individuals
preference parameters (e.g., Andersen et al., 2008; Fisman et al., 2008;
Gneezy et al., 2009).
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TABLE 2.—FIELD EXPERIMENTS PUBLISHED IN TOP-FIVE JOURNALS

BETWEEN 2007 AND 2017

AER ECMA JPE QJE ReStud Total

Field experiments 43 9 14 45 13 124
With factorial designs 11 2 4 6 4 27

Interactions included 3 1 1 2 1 8
Interactions not included 8 1 3 4 3 19

B. Ignoring Interactions in Practice

In section IID, we have shown that ignoring interactions
can lead to substantial size distortions and false positives.
Here we examine the practical implications of ignoring the
interactions in the papers listed in table A1. We reanalyze
the data from all field experiments with factorial designs
and publicly available data that do not include all the in-
teractions in the main specification.13 Of the ten most-cited
papers with factorial designs listed in table A1, only one in-
cludes all the interactions in the main specification. More
recent papers (which are less likely to be among the most
cited) are more likely to include all interaction terms. Out
of the 27 papers with factorial designs published in top-five
journals, 19 papers do not include all interaction terms (over
70%).14 Of these 19, four papers did not have publicly avail-
able replication data. In an online appendix we describe the
experimental design of each of the 27 papers and provide
details on our replication analysis.15

We downloaded the publicly available data files and repli-
cated the main results in each of the remaining fifteen papers.
We standardized the outcome variable in each paper to have
mean zero and standard deviation of one. We then compared
the original treatment effects (estimated without the inter-
action terms) with those estimated including the interaction
terms.16 In other words, we compare estimates based on the
short model (equation [2]) to those based on the long model
(equation [1]).

Key facts about interactions. As the discussion in sec-
tion IID highlights, the extent to which the short model will
not control size depends on the value of the interactions in
practice. We therefore start by plotting the distribution of es-
timated interaction effects (figure 3) and documenting facts
regarding interactions from our reanalysis. We find that in-
teractions are quantitatively important and typically not sec-
ond order. All estimates are measured in standard deviations
(σ) of the outcome variable. Although the median (mean)

13We also reanalyze the effect of not including the interaction in the
studies that do include all the interactions in their main specification in
appendix A.1.4.

14Although we restrict our reanalysis to papers published in “top-five”
journals, factorial designs are also prevalent in papers published in lower-
ranked journals. Hence, the total number of articles focusing on the short
model published in this period is likely much larger.

15Available at http://mauricio-romero.com/pdfs/papers/Appendix_cross
cuts.pdf.

16If studies have factorial designs that cross-randomize more than two
treatments, we include only two-way interactions in this calculation.

interaction for these papers is 0.00σ (0.00σ), the median
(mean) absolute value of the interaction is 0.07σ (0.13σ).
The median (mean) absolute value of interactions relative to
the main treatment effects is 0.37 (1.55). Thus, although it
may be true that interactions are small on average across all
studies, they are often sizeable in any given study. In our
data, the absolute value of the interactions is greater than
0.1σ in 36% and greater than 0.2σ in 19% of the cases. These
magnitudes lead to a 12% and 35% chance of rejecting the
null of no effect in our running example (as seen in figure 1),
which corresponds to more than a doubling and a sextupling,
respectively, in the rate of false rejections at the 5% level.

The second key finding is that most experiments will
rarely reject the null hypothesis that the interactions are zero
(figure 3 shades the fraction of the interactions that are sig-
nificant in the studies that we reanalyze). Among the fif-
teen papers that we reanalyzed, 6.2% of interactions (spread
across four papers) are significant at the 10% level, 3.6%
are significant at the 5% level (spread across three papers),
and 0.9% are significant at the 1% level (in one paper).17

These findings are not surprising because factorial designs
are rarely powered to detect meaningful interactions.

The fact that most experiments were not explicitly pow-
ered to detect interactions suggests that the main reason for
running experiments with factorial designs seems to be the
increase in power for detecting main effects. However, as
we show below, this comes at the considerable cost of an in-
creased rate of false positives (which is unsurprising based
on the distribution of interactions shown in figure 3).

Ignoring interactions has important implications for estima-
tion and inference. Figure 4a compares the original treat-
ment effect estimates based on the short model to the
estimates based on the long model which includes the inter-
action terms (figure 4b zooms in to cases where the value of
the main treatment effects in the short model is between −1
and 1 standard deviation). The median change in the abso-
lute value of the point estimate of the main treatment effect
is 96%. Roughly 26% of estimated treatment effects change
sign when they are estimated using the long regression.

Table 3 shows how the significance of the main treatment
estimates changes when using the long instead of the short
model. About 48% of treatment estimates that were signifi-
cant at the 10% level based on the short model are no longer
significant based on the long model. Here 53% and 57% of
estimates lose significance at the 5% and 1% levels, respec-
tively. A much smaller fraction of treatment effects that were
not significant in the short model are significant based on the
long regression (6%, 5%, and 1%, at the 10%, 5%, and 1%
levels, respectively).18

17Among the papers that originally included all interactions, 4.5% of in-
teractions are significant at the 10% level, 1.1% are significant at the 5%
level, and 0.0% are significant at the 1% level. See appendix A.1.4 for more
details.

18These results are not driven by just a few papers. If we first estimate the
median change in the absolute value of the estimate within each paper, and
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FIGURE 4.—TREATMENT EFFECTS ESTIMATES BASED ON THE LONG AND THE SHORT MODEL

This figure shows how the main treatment estimates change between the short and the long model across all studies (N = 172 in this figure). Figure 4a has all the treatment effects, and figure 4b zooms in to cases
where the value of the main treatment effects in the short model is between −1 and 1 standard deviation. The median main treatment estimate from the short model is 0.01σ, the median main treatment estimate from
the long model is 0.02σ, the average absolute difference between the treatment estimates of the short and the long model is 0.05σ, the median absolute difference in percentage terms between the treatment estimates
of the short and the long model is 96%, and 26% of treatment estimates change sign when they are estimated using the long model instead of the short model.

TABLE 3.—SIGNIFICANCE OF TREATMENT EFFECTS ESTIMATES BASED ON

THE LONG AND THE SHORT MODEL

Panel A: Significance at the 10% level
Without interaction

With interaction Not significant Significant Total

Not significant 95 34 129
Significant 6 37 43
Total 101 71 172

Panel B: Significance at the 5% level
Without interaction

With interaction Not significant Significant Total

Not significant 111 29 140
Significant 6 26 32
Total 117 55 172

Panel C: Significance at the 1% level
Without interaction

With interaction Not significant Significant Total

Not significant 140 17 157
Significant 2 13 15
Total 142 30 172

This table shows the number of significant coefficients at a given level when estimating the long re-
gression (columns) and the short regression (rows). It includes information from all papers with factorial
designs and publicly available data that do not include the interactions in the original study. Panel A uses
a 10% significance level, panel B uses 5%, and panel C uses 1%.

then the median change across papers, the result is similar to estimating the
median absolute changes across all estimates at 97%. Likewise, if we first
estimate the proportion of estimates that change sign within each paper,
and then estimate the average across papers, the result is 25%, which is
similar to estimating the proportion of estimates that change sign. Finally,
73% of papers have at least one estimate that is no longer significant at the
10% level when estimating the full model, 77% have at least one estimate
that is no longer significant at the 5% level, and 82% have at least one
estimate that is no longer significant at the 1% level.

We find similar results when we restrict our reanalysis
to the ten most cited papers with factorial designs that do
not include the interaction terms (with data available for re-
analysis). When we reestimate the treatment effects in these
papers after including interactions, we find that out of 21
results that were significant at the 5% level in the paper,
nine (or 43%) are no longer so after including interactions.
Corresponding figures and tables are presented in ap-
pendix A.1.2 (figure A2 and table A2).

Finally, we also distinguish between policy and concep-
tual experiments in table A1 (the latter typically have more
treatments and interactions) and see that the problem of in-
correct inference from ignoring interaction terms remains
even when we restrict attention to the policy experiments.
Of the twelve policy experiments, nine do not include all in-
teractions. When we reestimate the treatment effects in these
nine papers after including interactions, we find that out of
nineteen results that were significant at the 5% level in the
paper, six (or 32%) are no longer so after including inter-
actions. Corresponding figures and tables are presented in
appendix A.1.3 (figure A4 and table A3).19

IV. Improving Power for Detecting Main Effects

We now examine whether it is possible to improve power
for detecting main effects relative to long model t-tests
while maintaining size control for relevant values of the in-
teractions. We consider 2 × 2 factorial designs and briefly

19Among the papers that originally included all interactions, 23% of re-
sults that are significant at the 5% level in the short model are not signifi-
cant in the long model. See appendix A.1.4 for more details.
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comment on factorial designs with more than two treatments
at the end of each subsection. Throughout we will focus on
the main ideas underlying the different econometric meth-
ods. Appendix A.4 provides detailed descriptions and im-
plementation details.

A. Setup

We focus on β1 and partial out T2 and the constant, keep-
ing the partialing out implicit. Defining T12 = T1T2, the re-
gression model of interest is

Y = β1T1 + β12T12 + ε. (11)

Our goal is to test hypotheses about the main effect β1.
The two-sided long model t-test is the uniformly most

powerful test among tests that are unbiased for all values of
the interaction effect (e.g., van der Vaart, 1998; Elliott et al.,
2015a).20 This implies that any test that is more powerful
than the long model t-test for some values of β12 must have
lower power somewhere else. Thus, to achieve higher power
than the long model t-test, one has to choose which values
of β12 to direct power to based on prior knowledge.

If one insists on size control for all β12, the scope for
power improvements relative to the long model t-test is
theoretically limited.21 For example, at the 5% level, the
maximal theoretically possible power improvement over the
long model two-sided t-test is 12.5 percentage points. Sec-
tion IVB proposes a nearly optimal test that comes close
to achieving the maximal power gain at a priori likely val-
ues of the interaction, while controlling size for all val-
ues of the interaction. In appendix A.6, we show that a
Bonferroni-style correction after model selection leads to lo-
cal power improvements for a range of positive values of the
interaction.

The limited scope for power improvements relative to the
long model t-test motivates relaxing the uniform size con-
trol requirement and imposing additional restrictions on β12.
An extreme example is the short model t-test, which can im-
prove power relative to long model t-test by much more than
12.5%, but controls size only under the restrictive assump-
tion that β12 = 0. In section IVC, we explore an intermediate
approach that restricts the magnitude of β12, which is often
more realistic than assuming that β12 is exactly equal to zero.

B. Nearly Optimal Tests Targeting Power
toward a Likely Value β̄12

Suppose that a particular value β12 = β̄12 is a priori likely
and that we want to find a test that controls size for all val-
ues of β12 and is as powerful as possible when β12 = β̄12.

20A test is unbiased if its power is larger than its size.
21This is because the one-sided long model t-tests are uniformly most

powerful (e.g., Proposition 15.2 in van der Vaart, 1998) so that, for any β12,
the maximal power is achieved by a one-sided t-test (e.g., Armstrong &
Kolesar, 2015, 2021). See Armstrong and Kolesar (2018) for a discussion
of the implications for confidence intervals.

For concreteness, we focus on the case where β̄12 = 0 and
consider the testing problem

H0 : β1 = 0, β12 ∈ R against H1 : β1 �= 0, β12 = 0. (12)

We use the numerical algorithm developed by Elliott et al.
(2015a,b) to construct a nearly optimal test for the testing
problem in equation (12).22 Elliott et al. (2015a) consider a
setting where one is interested in maximizing weighted aver-
age power. The best test in this setting is a Neyman-Pearson
test based on the least favorable distribution (LFD). The LFD
is often difficult to compute analytically, and so Elliott et al.
(2015a) instead focus on an approximate LFD, which yields
feasible and nearly optimal tests.

Figure 5 displays the results of applying the nearly op-
timal test in our running example. The test controls size
for all values of β12 and, by construction, is nearly opti-
mal when β12 = 0. For example, when β1 = 0.2 the power
of the nearly optimal test is 98.5% of the maximal possible
power at β12 = 0 (implied by the corresponding uniformly
most powerful one-sided t-test). A comparison with the long
model t-test shows that the nearly optimal test is more pow-
erful when β12 is close to zero.

However, these power gains come at a cost. For certain
values of β12, the power can be much lower than that of the
long model t-test. Appendix A.7.3 provides a comprehensive
assessment of the performance of the nearly optimal tests by
plotting power curves for different values of β1.

Finally, the nearly optimal test of Elliott et al. (2015a)
becomes computationally prohibitive with many interac-
tions (i.e., many nuisance parameters) and, thus, cannot
be recommended for complicated factorial designs. The
Bonferroni approach of McCloskey (2017, 2020) discussed
in appendix A.6 constitutes a possible alternative in such
settings.

C. Inference under a Priori Restrictions
on the Magnitude of β12

If the researcher is certain that β12 = β̄12, they can ob-
tain powerful tests based on a regression of Y − β̄12T12 on
T1. If β̄12 = 0, this corresponds to the short model t-test. As
shown in section IID, short model t-tests are more powerful
than long model t-tests when β12 = 0, but do not control size
when β12 �= 0.

Exact knowledge of β12 may be too strong of an as-
sumption. Suppose instead that the researcher imposes prior
knowledge in the form of a restriction on the magnitude of
the interaction effect β12.

Assumption 1. |β12| ≤ C for some C < ∞.

Assumption 1 restricts the parameter space for β12 and
implies that β12 ∈ [−C,C]. We explore two different ap-
proaches for making inferences under this assumption. First,

22Our code to implement this procedure for 2×2 factorial designs is
available at https://mtromero.shinyapps.io/elliott/.
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FIGURE 5.—THE NEARLY OPTIMAL TEST OF ELLIOTT ET AL. (2015A) CONTROLS SIZE AND YIELDS POWER GAINS

OVER RUNNING THE FULL MODEL NEAR β̄12 = 0

Simulations are based on the running example with sample size N , normal iid errors, and 10,000 repetitions. The size for figures 5a and 5b is α = 0.05. EMW refers to the nearly optimal test of Elliott et al. (2015a).
The power bound in figure 5b is the power of the one-sided long model t-test for the testing problem H0 : β1 = 0 vs. H1 : β1 > 0.

we construct optimal confidence intervals under assump-
tion 1 based on the approach developed by Armstrong et al.
(2020). Their confidence intervals are based on linear esti-
mators for β1 and account for the worst case bias of the es-
timators. As a result, the length of the confidence interval
is determined by the bias and the variance of the estima-
tor, and to obtain optimal confidence intervals one has to
solve a bias-variance trade-off. This problem can be solved
using convex optimization. We refer to this approach as the
Armstrong-Kolesar-Kwon (AKK) approach.

The second approach is based on constructing bounds on
the main effect implied by assumption 1. In particular, up-
per and lower bounds on β1 can be obtained from regres-
sions of Y + CT12 on T1 and Y − CT12 on T1, respectively.
We apply the procedure of Imbens and Manski (2004) and
Stoye (2009) to construct valid confidence intervals for β1.
We refer to this approach as the Imbens-Manski-Stoye (IMS)
approach.23

In figure 6, we report the rejection probabilities of tests
that reject if zero is not in the AKK and IMS confidence
intervals. To illustrate, we assume that C = 0.1, implying

23As outlined in appendix A.4.3, it is straightforward to use the IMS
approach if the prior information takes the form C1 ≤ β12 ≤ C2 for any
−∞ < C1 < C2 < ∞, which may be more appropriate in some settings.
Further, one could make inferences under restrictions on the direction of
the interaction effects using the approach by Ketz and McCloskey (2023).
Both types of approaches may be suitable in cases where there is a strong
prior that treatments are complements or substitutes.

that β12 ∈ [−0.1, 0.1].24 Our results suggest that AKK and
IMS can be substantially more powerful than long model t-
tests when the prior knowledge is correct, but may exhibit
size distortions when it is not. Panel b shows that the AKK
and IMS power curves cross at zero. Thus, the choice be-
tween the two approaches should be based on which values
of the interaction the researchers want to direct power to. Ap-
pendices A.7.4 and A.7.5 present the corresponding power
curves for different values of β1.

When researchers are primarily interested in the main ef-
fects and feel confident that the interactions are second or-
der, AKK and IMS should be strictly preferred to the short
model, since it is more realistic to prespecify that the interac-
tion is in a range than exactly zero. However, prespecifying
the appropriate range of prior values for the interaction is
nontrivial and requires judgment.25

24Note that in our simulations σ = 1. This is similar to standardizing the
outcome by the sample variance in the control group. Thus, the scale of
the coefficients (β1, β2, and β12) and of C can be interpreted as “standard
deviations of the outcome.” As mentioned above, in the papers we repli-
cate, the median (mean) absolute value of the interaction is 0.07 (0.13) of
the standard deviation of the outcome. Further, the absolute value of the
interactions is greater than 10% of the standard deviation of the outcome
in 36% of cases. Thus, in many settings it might be reasonable to assume
β12 ∈ [−0.1, 0.1], but researchers will need to judge, depending on the
context, what a reasonable value for C is.

25It is problematic to use AKK or IMS based on first running the long
model and not rejecting that the interaction is in a certain range. This would
result in data-dependent model selection issue similar to those documented
in section IIE. Thus, although AKK and IMS are improvements over the
short model, they do not solve the underlying problem of not knowing the
true value of the interaction.

D
ow

nloaded from
 http://direct.m

it.edu/rest/article-pdf/107/3/589/2075022/rest_a_01317.pdf by guest on 26 M
ay 2025



600 THE REVIEW OF ECONOMICS AND STATISTICS

FIGURE 6.—RESTRICTIONS ON THE MAGNITUDE OF β12 YIELD POWER GAINS IF THEY ARE CORRECT BUT LEAD TO INCORRECT INFERENCES IF THEY ARE NOT

Simulations are based on the running example with sample size N , normal iid errors, and 10,000 repetitions. The size for figures 6a and 6b is α = 0.05. AKK refers to Armstrong et al. (2020)’s approach for constructing
optimal confidence intervals under prior knowledge about the magnitude of β12, |β12 | ≤ 0.1 (dashed vertical lines). IMS refers to the Imbens and Manski (2004) and Stoye (2009) approach for constructing valid
confidence intervals under prior knowledge about the magnitude of β12, |β12 | ≤ 0.1 (dashed vertical lines).

AKK and IMS remain computationally feasible in more
complicated factorial designs. However, both approaches
require reliable prior knowledge on the magnitude of po-
tentially very many interactions to yield notable power
improvements.

D. A Design-Based Approach for Improving Power

The discussion above focused on improving power for
detecting main effects in existing experiments with facto-
rial designs. Although these techniques can also be used to
analyze new experiments (and be included in a preanalysis
plan), a design-based alternative is to leave the “interaction
cell” empty (i.e., to set N4 = 0) and to reassign those sub-
jects to the other cells (see table A5).

Leaving the interaction cell empty yields power improve-
ments for testing hypotheses about the main effects relative
to long model t-tests (see appendix A.5). Figure 7 provides
an illustration based on our running example. Leaving the
interaction cell empty yields tests that control size for all val-
ues of the interaction and achieve the highest power among
the approaches with uniform size control (the long model
t-test and the nearly optimal test).

This design (with interaction cells empty) yields power
gains relative to running two separate experiments because
the control group is used twice, but it avoids the problem of
interactions discussed above. An example of such a design
is provided by Muralidharan and Sundararaman (2011) who
study the impact of four different interventions in one exper-

iment with one common control group, but no cross-cutting
treatment arms.

E. Which Econometric Approach Should
One Use in Practice?

For the design of new experiments, if the primary objects
of interest are the main effects, we recommend leaving the
interaction cells empty and increasing the number of units
assigned exclusively to the treatment or the control groups.
This design-based approach controls size and yields notable
power improvements over the long model t-tests based on a
factorial design.

For the reanalysis of existing experiments, the choice of
the econometric method for making inferences on the main
effects should be based on the strength of the available
prior knowledge. If researchers have little prior knowledge
about the interaction effects, we recommend using the long
model t-tests, which are the uniformly most powerful unbi-
ased tests. If prior knowledge about the interaction effects is
available, but the researchers are not confident enough to be
willing to sacrifice size control for all values of the interac-
tions, we recommend the nearly optimal tests of Elliott et al.
(2015a). The nearly optimal test allows for targeting power
based on prior knowledge while ensuring uniform size con-
trol. If precise prior knowledge about the interaction effects
is available, researchers can use the AKK or the IMS ap-
proach to leverage such prior knowledge to improve power
substantially. However, unlike the other methods, these two
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FIGURE 7.—LEAVING THE INTERACTION CELL EMPTY INCREASES POWER RELATIVE TO APPROACHES THAT CONTROL SIZE FOR ALL β12

Simulations are based on the running example with sample size N , normal iid errors, and 10,000 repetitions. The size for figures 7a and 7b is α = 0.05. EMW refers to Elliott et al. (2015a)’s nearly optimal test. AKK
refers to Armstrong et al. (2020)’s approach for constructing optimal confidence intervals under prior knowledge about the magnitude of β12. IMS refers to the Imbens and Manski (2004) and Stoye (2009) approach
for constructing valid confidence intervals under prior knowledge about the magnitude of β12. The design of the experiment with the empty interaction cell is optimal for achieving equal power to detect both main
effects; see appendix A.5 for details.

approaches exhibit size distortions when the prior knowl-
edge is incorrect.

Irrespective of which method researchers use to improve
power by incorporating prior knowledge, such prior knowl-
edge should be prespecified in the preanalysis plan. In ad-
dition, we recommend always complementing the results
with long model t-tests (even if only in an appendix).
These tests have desirable optimality properties and allow
for communicating results without subjective priors about
interactions.

In some high-dimensional factorial designs, estimating
the long model with all interactions may not be realistic. In
this case we recommend that the authors prespecify which
interactions they will ignore and which treatments they will
pool in the preanalysis plan. To avoid model selection issues,
it is crucial that such choices are made ex ante (and prespec-
ified) and not be data-driven.

V. When Does the Short Model Make Sense?

Our discussion so far shows how using factorial designs
and ignoring interactions can lead to incorrect inferences
relative to a business-as-usual counterfactual (or pure ex-
perimental control group). At the same time, this approach
is widely used in practice, perhaps reflecting a perception
that classic texts on experimental design endorse it. We
revisit these texts and review the historical use of facto-
rial designs in field experiments to clarify the conditions
and caveats under which factorial designs and the short

model may be appropriate. We highlight four relevant cases
below.

The first case is where the goal of initial experiments is
to explore several treatment dimensions in an efficient way
to generate promising interventions for further testing. For
example, Cochran and Cox (1957, p. 152) recommend fac-
torial designs for “exploratory work where the object is to
determine quickly the effects of a number of factors over a
specified range.” Examples of such experiments include (a)
agricultural experiments that vary soil, moisture, tempera-
ture, fertilizer, and several other inputs and (b) online A/B
testing where large technology companies run thousands of
randomized experiments each year to optimize profits over
several dimensions (e.g., Kohavi et al., 2020). Both sets of
examples feature sequential testing, making factorial designs
an efficient way to quickly learn about which of several treat-
ment dimensions that could be manipulated may be worth
studying and testing further. In contrast, policy experiments
are typically run only once, making factorial designs and
short model estimates less desirable.

The second case is when the goal of the experiment is not
hypothesis testing but to minimize MSE criteria (or other
loss functions), which involve a bias-variance trade-off in
estimating the main effects. For example, for small values of
the interaction effects, estimators based on the short model
can yield a lower root MSE than the estimators based on the
design, which leaves the interaction cell empty (Blair et al.,
2019). These alternative criteria also justify the use of facto-
rial designs for agricultural experiments and online A/B test-
ing, because their goal is to optimize decision making over
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several factors (to maximize yields or profits) as opposed to
testing if individual factors are “significant.” Again, this con-
trasts with the case of policy experiments, where the goal is
typically to test if a program or policy had a significant ef-
fect, and factorial designs and short-model inferences may
therefore be problematic.

The third case is to improve an experiment’s external va-
lidity. Cochran and Cox (1957, p. 152) recommend factorial
designs for “experiments designed to lead to recommenda-
tions that must apply over a wide range of conditions. Sub-
sidiary factors may be brought into an experiment so as to
test the principal factors under a variety of conditions sim-
ilar to those that will be encountered in the population to
which recommendations are to apply”; see also the discus-
sion in Fisher (1992). Thus, factorial designs and the short
model may be fine when one dimension of the experiment is
studying reasonable variants of the main treatment, but less
so when all treatments are of primary interest.26

The fourth case is conceptual (as opposed to policy) ex-
periments, such as résumé audit studies, where many or all of
the characteristics that are randomized (e.g., age, education,
race, and gender) do exist in the population. In these cases,
a weighted average short model effect may be a reasonable
target parameter subject to researchers indicating how the re-
sulting effect should be interpreted. However, even for such
experiments, we recommend (when feasible) designing the
experiments such that the treatment share of various charac-
teristics being studied is the same as their population propor-
tion. Doing so will make the short-model coefficient more
likely to approximate a population relevant parameter of
interest.

VI. Conclusion

In this paper we study the theory and practice of inference
in randomized experiments with factorial designs. These de-
signs have been widely used and motivated by two main con-
siderations: (i) studying more treatments in a cost-effective
way and (ii) learning about interactions. We show that both
of these uses can be problematic in practice, driven to a large
extent by the lack of power to detect interactions.

Given our discussion and results, we recommend that
(if realistic) studies using factorial designs should always
present the fully saturated long regression model (even if
only in an appendix) for transparency. If researchers would
like to focus on results from the short model, they should
clearly indicate that treatment effects should be interpreted
as a composite effect that includes a weighted-average of in-
teractions with other treatments. Further, if the estimand of
interest is based on the short model, this should be specified
in a preanalysis plan, and not justified ex post based on es-

26For example, in Alatas et al. (2012), the primary treatment effect of in-
terest is the impact of community-based targeting, but they also randomize
different aspects of how to run the community meeting (which are reason-
able variants of the main treatment).

timated interactions being insignificant (due to the problem
of data-dependent model selection).

In practice, researchers’ use of factorial designs and the
short model is often motivated by prior beliefs that the abso-
lute values of the interactions are “small.” In such cases, the
econometric approaches we discuss allow power gains for
inference against a business-as-usual counterfactual (over
the long model) while maintaining size control for relevant
values of the interaction. In such cases, we recommend that
researchers prespecify their priors and intended econometric
approach for inference.

If the primary objects of interest are the main effects, an
alternative design is to leave the interaction cells empty. This
design-based approach naturally controls size and yields no-
table power improvements. If interaction effects are of pri-
mary interest, we recommend that experiments be explicitly
powered to detect interactions and to indicate this in the pre-
analysis plan (as, e.g., in Mbiti et al., 2019).

Recently, our recommendations have been characterized
as too conservative by Banerjee et al. (2021), who propose a
LASSO-based method for making inferences on the most ef-
fective combination of treatments. Applying their approach
to high-dimensional factorial designs is appealing: it allows
researchers to explore the parameter space of main and in-
teraction effects. However, their method relies on the strong
assumption that “[treatments and interactions] have either no
effect or have sufficiently large (positive or negative) influ-
ence on the outcomes.” This restriction avoids model selec-
tion issues by assumption. It may be a good approximation
in highly powered experiments or when researchers have
strong prior knowledge about effect sizes.

Finally, it is worth noting that factorial designs do pro-
vide an efficient way of learning about multiple treatments as
well as their interactions in the same experiment. The prob-
lems we highlight stem in large part from using factorial de-
signs in conjunction with a focus on statistical significance
for inference on whether treatment effects or interactions
are meaningful. This approach reflects the default frequen-
tist paradigm in experimental economics. Going forward,
Bayesian methods (that do not privilege a binary “significant
or not” threshold for inference) may constitute a promising
framework for efficient learning in experiments with cross-
cutting designs (e.g., Kassler et al., 2019).
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